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Supplementary Notes – Understanding metric-related pitfalls
in image analysis validation

SUPPLEMENTARY METHODS

Literature search

The literature search of metric pitfalls and limitations was conducted on the platform Google
Scholar. The checkbox "include patents" was activated and the checkbox "include citations" was
deactivated; other default settings were left unchanged. For each metric, a specific search string
using the Boolean operators OR and AND was generated as follows:

• (Different notations of the metric name, including synonyms and acronyms, enclosed in
quotation marks, respectively, and combined with OR)

• AND "metric"
• AND (different expressions pertaining to the concept of pitfalls, limitations and flaws, enclosed
in quotation marks, respectively, and combined with OR)

For example, the following search string was used for the literature search of Dice Similarity
Coefficient (DSC) pitfalls: ("DSC" OR "Dice Similarity Coefficient" OR "Sørensen–Dice
coefficient" OR "F1 score" OR "DCE") AND "metric" AND ("pitfall" OR "limitation" OR
"caveat" OR "drawback" OR "shortcoming" OR "weakness" OR "flaw" OR "disadvantage”
OR "suffer").

A second literature search dedicated to the pitfalls collected during the Delphi process was con-
ducted on the platforms Google Scholar and Google. This search served the purpose of determining
how many of the proposed pitfalls could be found in either existing research literature or online
resources such as blogs, assuming that the issue is already roughly known to the person conducting
the search. We further determined whether or not a found pitfall was presented in a visual manner.
We analyzed the first three results pages (corresponding to thirty results) from each search platform
and excluded our own previous work on metric pitfalls from the analysis.

Delphi process

The collection of pitfalls was achieved via a multi-stage Delphi process conducted among an
international expert consortium comprised of more than 60 biomedical image analysis experts, as
well as community feedback. A Delphi process is a structured group communication process that
serves to pool opinions from an expert panel via a series of individual interrogations, usually in
the form of questionnaires, interspersed with feedback from the respondents [8]. The technique is
widely used for building consensus among experts in medicine, particularly in the development of
best practices in areas where evidence may be limited, conflicting, or absent [49]. Expert selection
was initially based on membership in major relevant societies such as the Biomedical Image
Analysis ChallengeS (BIAS) initiative, theMedical Open Network for Artificial Intelligence (MONAI)
Working Group for Evaluation, Reproducibility and Benchmarks, and the Medical Image Computing
and Computer Assisted Interventions (MICCAI) Special Interest Group for Challenges (previously
MICCAI board working group), as well as a track record of expertise in the areas of metrics,
challenges and/or best practices. To reflect as broad a range of application areas and metric pitfalls
as possible, the number of consortium members was increased throughout the process to a final
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number of 62 members. The Delphi process comprised four surveys. Each survey was developed by
the coordinating team of the process and sent out to the remaining members of the consortium.
Upon completion, the coordinating team then analyzed the results and iteratively refined the list
of pitfalls. The main stages of the compilation and consensus building process are detailed in the
following:

(1) Compilation of pitfall sources: The primary purpose of the first surveywas obtaining agreement
on sources of pitfalls.

(2) Collection of pitfalls: The following survey specifically asked for concrete pitfalls in the
presence of those problem characteristics.

(3) Community feedback: The proposed list of pitfalls was further complemented by social media-
based feedback from the general scientific community.

(4) Final agreement on pitfalls: The subsequent survey served to obtain consensus agreement on
which pitfalls to include. For each pitfall, it asked whether the pitfall should be included. In
addition, the experts were given the opportunity to provide feedback on each pitfall and to
suggest further pitfalls. The final collection of pitfalls was illustrated and all metric values
were verified by two independent observers.

(5) Creation of taxonomy: The collected pitfalls were analyzed and a taxonomy was created. In
the final survey, approval of the consortium for the structure and phrasing of the taxonomy
and the assignment of specific pitfalls to the taxonomy was obtained.

Expert consortium

The expert consortium consisted of a total of 70 researchers (70% male, 30% female) from a total of
65 institutions. The majority of experts (50%) were professors, followed by postdoctoral researchers
(39%). The median h-index of the consortium was 31.5 (mean: 36; minimum: 6; maximum: 113) and
the median academic age was 18 years (mean: 19; minimum: 3; max: 42). Experts were from 19
countries and 5 continents. 60% of experts had a technical, 6% a clinical, 3% a biological, and 23% a
mixed background. Of the 65 institutions, we could identify the number of employees for 89%. Of
those, the majority of institutions had a size between 1,000 and 10,000 employees (57%), followed
by even larger institutions between 10,000 and 100,000 employees (22%), and smaller institutions
below 1,000 employees (20%). Only a small portion of institutions were above 100,000 employees
(2%).



Supplementary Notes – Understanding metric-related pitfalls 3

SUPPL. NOTE 1 METRIC FUNDAMENTALS

The present work focuses on biomedical image analysis problems that can be interpreted as
classification tasks at the image, object, or pixel level. The vast majority of metrics for these problem
categories are directly or indirectly based on epidemiological principles of True Positive (TP), False
Negative (FN), False Positive (FP), True Negative (TN), i.e., the cardinalities of the so-called confusion
matrix. The TP/FN/FP/TN are henceforth referred to as cardinalities. In the case of more than two
classes 𝐶 , we also refer to the entries of the 𝐶 ×𝐶 confusion matrix as cardinalities. For simplicity
and clarity in notation, we restrict ourselves to the binary case in most examples. Cardinalities
can be computed at the image (segment), object, or pixel level. They are typically computed by
comparing the prediction of the algorithm to a reference annotation. Modern neural network-based
approaches commonly require a threshold to be set in order to convert the algorithm output
comprising predicted class scores (also referred to as continuous class scores) to a confusion matrix.
For the purpose of metric recommendation, the available metrics can be broadly classified as follows
(see also [9]):

• Counting metrics operate directly on the confusion matrix and express the metric value as
a function of the cardinalities. In the context of segmentation, they are typically referred to
as overlap-based metrics [58]. We distinguishmulti-class counting metrics, which are
defined for an arbitrary number of classes and invariant under class order, from per-class
counting metrics, which are computed by treating one class as foreground/positive class
and all other classes as background. Popular examples for the former include Matthews
Correlation Coefficient (MCC) or Accuracy, while examples for the latter are Sensitivity,
Specificity and DSC.

• Multi-threshold metrics operate on a dynamic confusion matrix, reflecting the conflicting
properties of interest, such as high Sensitivity and high Specificity. Popular examples include
the Area under the Receiver Operating Characteristic Curve (AUROC) and Average Precision
(AP).

• Distance-based metrics have been designed for semantic and instance segmentation tasks.
They operate exclusively on the TPs and rely on the explicit definition of object boundaries.
Popular examples are the Hausdorff Distance (HD) and the Normalized Surface Distance
(NSD).

Depending on the context (e.g., image-level classification vs. semantic segmentation task) and the
community (e.g., medical imaging community vs. computer vision community), identical metrics are
referred to with different terminology. For example, Sensitivity, True Positive Rate (TPR) and Recall
refer to the same concept. The same holds true for the DSC and the F1 Score. The most relevant
metrics for the problem categories in the scope of this paper are introduced in the following.

Most metrics are recommended to be applied per class (except for the multi-class counting
metrics), meaning that a potential multi-class problem is converted to multiple binary classification
problems, such that each relevant class serves as the positive class once. This results in different
confusion matrices depending on which class is used as the positive class.

1.1 Image-level Classification

Image-level classification refers to the process of assigning one or multiple labels, or classes, to
an image. Modern algorithms usually output predicted class scores (or continuous class scores)
between 0 and 1 for every image and class, indicating the probability of the image belonging
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to a specific class. By introducing a threshold (e.g., 0.5), predictions are considered as positive
(e.g., cancer = true) if they are above the threshold, or negative if they are below the threshold.
Subsequently, predictions are assigned to the cardinalities (e.g., a cancer patient with prediction
cancer = true is considered as TP) [15]. The most popular classification metrics are counting metrics,
operating on a confusion matrix with fixed threshold on the class probabilities, and multi-threshold
metrics, as detailed in the following.

Counting metrics. As stated previously, counting metrics rely on the confusion matrix. We
distinguish between per-class and multi-class counting metrics. Popular multi-class counting
metrics include:

Accuracy [60]: Fig. SN 3.38
Balanced Accuracy (BA) [60]: Fig. SN 3.39
Expected Cost (EC) (also referred to as Expected Prediction Error or Expected Loss) [7, 24, 32]:

Fig. SN 3.42
Matthews Correlation Coefficient (MCC) (also referred to as Phi Coefficient) [46]: Fig. SN 3.46
Weighted Cohen’s Kappa (WCK) (also referred to as Weighted Cohen‘s Kappa Coefficient,

Weighted Kappa Statistic or Weighted Kappa Score) [13]: Fig. SN 3.54

Popular per-class counting metrics include:

F𝛽 Score [12, 63]: Fig. SN 3.43
Net Benefit (NB) [64]: Fig. SN 3.47
Negative Predictive Value (NPV) [60]: Fig. SN 3.48
Positive Predictive Value (PPV) (also referred to as Precision) [60]: Fig. SN 3.51
Sensitivity (also referred to as Recall, TPR or Hit Rate) [60]: Fig. SN 3.52
Specificity (also referred to as Selectivity or True Negative Rate (TNR)) [60]: Fig. SN 3.53

Multi-threshold metrics. The classical counting metrics presented above rely on fixed thresh-
olds to be set on the predicted class probabilities (if available), resulting in them being based on
the cardinalities of the confusion matrix.Multi-threshold metrics overcome this limitation by
calculating metric scores based on multiple thresholds. Popular examples are:

Area under the Receiver Operating Characteristic Curve (AUROC) (also referred to as
Area under the Curve (AUC), AUC - ROC (Area under the Curve - Receiver Operating
Characteristics), C-Index, C-Statistics) [31]: Fig. SN 3.55

Average Precision (AP) [23, 42]: Fig. SN 3.56

Calibration metrics. While most research in biomedical image analysis focuses on the dis-
crimination capabilities of classifiers, a complementary property of relevance is the calibration
of predicted class scores (also known as confidence scores). Intuitively speaking, a system is well-
calibrated if the predicted class scores (i.e., the output of the model) reflect the true probabilities
of the outcome. In practice, this means that calibrated scores match the empirical success rate
of associated predictions. For a binary classification task, calibration implies that of all the data
samples assigned a predicted score of 0.8 for the positive class, empirically, 80% belong to this class.
Popular examples are:

Brier Score (BS) [26]: Fig. SN 3.64
Class-Wise Calibration Error (CWCE) [40, 41]: Fig. SN 3.65
Expected Calibration Error (ECE) [47]: Fig. SN 3.66
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Expected Calibration Error Kernel Density Estimate (ECEKDE) [52] : Fig. SN 3.67
Kernel Calibration Error (KCE) [28, 68]: Fig. SN 3.68
Negative Log Likelihood (NLL) [14]: Fig. SN 3.69
Root Brier Score (RBS) [28]: Fig. SN 3.70

1.2 Semantic Segmentation

Semantic segmentation is commonly defined as the process of partitioning an image into multiple
segments/regions. To this end, one or multiple labels are assigned to every pixel such that pixels with
the same label share certain characteristics. Semantic segmentation can therefore also be regarded
as pixel-level classification. As in image-classification problems, predicted class probabilities are
typically calculated for each pixel, deciding on the class affiliation based on a threshold over
the class scores [1]. In semantic segmentation problems, the pixel-level classification is typically
followed by a post-processing step, in which connected components are defined as objects, and
object boundaries are created accordingly. Semantic segmentation metrics can roughly be classified
into: (1) counting metrics or overlap-based metrics, for measuring the overlap between the reference
annotation and the prediction of the algorithm, (2) distance-based or boundary-based metrics, for
measuring the distance between object boundaries, and (3) problem-specific metrics, measuring,
for example, object volumes.

Counting metrics. The most frequently used segmentation metrics are counting metrics. In
the context of segmentation they are also referred to as overlap-based metrics, as they essentially
measure the overlap between a reference mask and the algorithm prediction. Popular examples of
overlap-based metrics include:

Dice Similarity Coefficient (DSC) (also referred to as Sørensen–Dice Coefficient, F1 Score,
Balanced F Score) [20]: Fig. SN 3.41

Intersection over Union (IoU) (also referred to as Jaccard Index, Tanimoto Coefficient) [35]:
Fig. SN 3.45

centerline Dice Similarity Coefficient (clDice) [57]: Fig. SN 3.40

Distance-based metrics. Overlap-based metrics are often complemented by distance-based
metrics that operate exclusively on the TPs and compute one or several distances between the
reference and the prediction. Besides few exceptions, distance-based metrics are often boundary-
based metrics which focus on assessing the accuracy of object boundaries. Popular examples
include:

Average Symmetric Surface Distance (ASSD) (also referred to as Weighted Bilateral Mean
Contour Distance) [70]: Fig. SN 3.58

Boundary Intersection over Union (Boundary IoU) [10]: Fig. SN 3.59
Hausdorff Distance (HD) (also referred to as Maximum Symmetric Surface Distance, Haus-

dorff Metric, Pompeiu–Hausdorff Distance) [34]: Fig. SN 3.60
Hausdorff Distance 95th Percentile (HD95) [34]: Fig. SN 3.63
Mean Average Surface Distance (MASD) (also referred to as Mean Surface Distance) [6]:

Fig. SN 3.61
Normalized Surface Distance (NSD) (also referred to as Normalized Surface Dice, Surface

Distance, Surface Dice, Surface DSC) [50]: Fig. SN 3.62
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Problem-specific segmentation metrics. While overlap- and distance-based metrics are the
standard metrics used by the general computer vision community, biomedical applications often
have special domain-specific requirements. In medical imaging, for example, the actual volume of
an object (e.g., a tumor) may be of particular interest. In this case, volume metrics such as the
Absolute or Relative Volume Error and the Symmetric Relative Volume Difference can be computed
[48].

1.3 Object Detection

Object detection refers to the detection of one or multiple objects (or: instances) of a particular
class (e.g., lesion) in an image [42]. The following description assumes single-class problems, but
translation to multi-class problems is straightforward, as validation for multiple classes on object
level is performed individually per class. Notably, as multiple predictions and reference instances
may be present in one image, the predictions need to include localization information, such that
reference and predicted objects can be matched. Important design choices with respect to the
validation of object detection methods include:

(1) How to represent an object? Representation is typically composed of location information and
a class affiliation. The former may for example take the form of a bounding box (i.e., a list
of coordinates), a pixel mask, or the object’s center point. Additionally, modern algorithms
typically assign a confidence value to each object, representing the probability of a prediction
corresponding to an actual object of the respective class. Note that a confusion matrix is later
computed for a fixed threshold on the predicted class probabilities.1

(2) How to decide whether a reference instance was correctly detected? This step is achieved by
applying the localization criterion. A localization criterion may, for example, be based on
comparing the object centers of the reference and prediction or computing their overlap.

(3) How to resolve assignment ambiguities? The above step might lead to ambiguous matchings,
such as two predictions being assigned to the same reference object. Several strategies exist
for resolving such cases.

The following sections provide details on (1) applying the localization criterion, (2) applying the
assignment strategy, and (3) computing the actual performance metrics.

Localization criterion. As one image may contain multiple objects or no object at all, the
localization criterion or hit criterion measures the (spatial) similarity between a prediction
(represented by a bounding box, pixel mask, center point or similar) and a reference object. It
defines whether the prediction hit/detected (TP) or missed (FP) the reference. Any reference object
not detected by the algorithm is defined as FN. Please note that TNs are not defined for object
detection tasks. Popular localization criteria include:

Box/Approx Intersection over Union (IoU) [35]: Fig. SN 3.74
Mask IoU > 0 [35, 66]: Fig. SN 3.75
Center Distance [30]: Fig. SN 3.72
Point inside Mask/ Box/ Approx 2: Fig. SN 3.76

1Please note that we will use the term confidence scores analogously to predicted class probabilities in the context of object
detection and instance segmentation.
2https://cada.grand-challenge.org/Assessment/

https://cada.grand-challenge.org/Assessment/
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Assignment strategy. The localization criterion alone is not sufficient to extract the final
confusion matrix based on a fixed threshold for the predicted class probabilities (confidence scores),
as ambiguities can occur. For example, two predictionsmay have been assigned to the same reference
object in the localization step, or vice versa. These ambiguities need to be resolved in a further
assignment step. This assignment and thus the resolving of potential assignment ambiguities can
be done via different strategies:

Greedy (by Score) Matching [23]: Fig. SN 3.77
Optimal (Hungarian) Matching [38]: Fig. SN 3.79
Matching via Overlap > 0.5 [21]: Fig. SN 3.80
Greedy (by Localization Criterion) Matching [44]: Fig. SN 3.78

Metric computation. Similar to image-level classification and semantic segmentation algo-
rithms, object detection algorithms are commonly assessed with counting metrics, assuming a fixed
confusion matrix. Popular examples include:

F𝛽 Score [12, 63]: Fig. SN 3.43
False Positives per Image (FPPI) [5, 62]: Fig. SN 3.44
Positive Predictive Value (PPV) (also referred to as Precision) [60]: Fig. SN 3.51
Sensitivity (also referred to as Recall, TPR or Hit Rate) [60]: Fig. SN 3.52

Similarly, multi-threshold metrics rely on a range of thresholds. Popular examples are:

Average Precision (AP) [23, 42]: Fig. SN 3.56
Free-Response Receiver Operating Characteristic (FROC) Score [62]: Fig. SN 3.57

1.4 Instance Segmentation

In contrast to semantic segmentation, instance segmentation problems distinguish different
instances of the same class (e.g., different lesions). Similarly to object detection problems, the
task is to detect individual instances of the same class, but detection performance is measured
by pixel-level correspondences (as in semantic segmentation problems). Optionally, instances can
be applied to one of multiple classes. Validation metrics in instance segmentation problems often
combine common detection metrics with segmentation metrics applied per instance. For instance,
segmentation problems, we consider different localization criteria, namely:

Localization criteria:

Boundary Intersection over Union (Boundary IoU) [10]: Fig. SN 3.71
Mask IoU [35]: Fig. SN 3.74
Intersection over Reference (IoR) [45]: Fig SN 3.73

Additional counting metric: If detection and segmentation performance should be assessed simul-
taneously in a single score, the Panoptic Quality (PQ) metric can be utilized [36]: Fig. SN 3.49.

It should be noted that instance segmentation problems are often phrased as semantic segmen-
tation problems with an additional post-processing step, such as connected component analysis
[55].
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SUPPL. NOTE 2 METRIC PITFALLS

This section presents common limitations of image processing metrics related to [P1] an inadequate
choice of problem category (Suppl. Note 2.1), [P2] poor metric selection (Suppl. Note 2.2) and [P3]
poor metric application (Suppl. Note 2.3) in an illustrated manner.

To preserve visual clarity, the most important of the presented metric values may be highlighted
with color. Green metric values correspond to a "good" metric value (e.g. a high Sensitivity score),
whereas red values correspond to a "bad" value (e.g. a low Sensitivity). Green check marks indicate
desirable behavior of metrics, red crosses indicate undesirable behavior. Please note that a low
metric value is not automatically a "bad" score. A metric value should always be put into perspective
and compared to inter-rater variability. For simplicity, we still use the terms "good" and "bad/poor"
throughout the section. Finally, our illustrations do not provide the concrete class probabilities of
the presented classifiers.

2.1 Pitfalls related to an inadequate choice of the problem category

Performance metrics are typically expected to reflect a domain-specific (e.g., clinical) validation
goal. Previous research, however, suggests that this is often not the case [56]. Before choosing
validation metrics, the correct problem category needs to be defined. In the following, we present
pitfalls related to metrics not being applied to the appropriate problem category. These can either
be associated with a wrong choice of the problem category (here: Figs. 3 and SN 2.1; more examples
are provided in [54]) or the lack of a matching problem category (Fig. SN 2.2).
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Assessing object detection performance at image level yields misleading results

Fig. SN 2.1. Image-level classification metrics such as the Area under the Receiver Operating Char-
acteristic Curve (AUROC) curve can be used to validate object detection models by first aggregating
predictions to one image-level score (per class). This validation scheme discards the information
on the object matching (localization, number of objects etc.). This leads to several problems: (a)
The image-level Receiver Operating Characteristic (ROC) curve does not measure the localization
performance. Both Prediction 1 and 2 are considered as True Positive (TP) due to their score being very
high, although Prediction 2 does not hit the annotated object. (b) The image-level ROC is invariant
to the number of annotated objects in an image. The curve does not discriminate between a model
detecting all positives (Prediction 1) and a model detecting only one of the positives (Prediction 2),
as long as the maximum score is the same. (c) The image-level ROC is invariant to the number of
detections in an image. The curve does not discriminate between a model with many False Positives
(FP) (Prediction 2), and a model with just one FP (Prediction 1), as long as the maximum score is the
same. The class probabilities are represented by confidence scores (Conf.).
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Common metrics may not reflect the domain interest

Fig. SN 2.2. In the absence of a matching problem category for the problem at hand, it may not be
possible to find a common metric that ideally captures the domain interest. In this example, accuracy
of the ratio between two volumes is the property of interest (e.g., the percentage of blood volume
ejected in each cardiac cycle [4]). Using overlap-based segmentation metrics (here: Dice Similarity
Coefficient (DSC)) to measure the volumetric ratio may be misleading. Predictions 1 and 2 result
in similar averaged DSC metric values although they result in a different ratio between structure
volumes, which is the parameter of interest. ∅ refers to the average DSC values.
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2.2 Pitfalls related to poor metric selection

Validation metrics typically assess a specific property of interest. Thus, a metric designed for a
particular purpose often cannot be used to appropriately validate another property. This is due to
both the limitations as well as the mathematical properties of individual metrics, both of which are
often neglected. In this section, we present pitfalls related to poor metric selection.

2.2.1 Pitfalls related to disregard of the domain interest. Several requirements for metric selection
arise from the domain interest, which may clash with particular metric limitations. In the following,
we present pitfalls related to disregard of the domain interest, stemming from the following sources:

• Importance of structure boundaries (Figs. 4a and SN 2.3)
• Importance of structure volume (Fig. SN 2.4)
• Importance of structure center(line) (Fig. SN 2.5)
• Importance of confidence awareness (Fig. SN 2.6)
• Importance of comparability across data sets (Figs. SN 2.7)
• Unequal severity of class confusions (Figs. 4b and SN 2.8)
• Importance of cost-benefit analysis (Fig. SN 2.9)
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Volume-based metrics alone are inadequate for assessing performance

Fig. SN 2.3. Effect of only focusing on object volume. Both Predictions 1 and 2 result in the correct
volume difference of 0, but do not overlap the reference (Dice Similarity Coefficient (DSC) and
Intersection over Union (IoU) of 0). Only the boundary-based measures (Hausdorff Distance (HD),
Hausdorff Distance 95th Percentile (HD95), Average Symmetric Surface Distance (ASSD), Mean
Average Surface Distance (MASD), and Normalized Surface Distance (NSD)) recognize the mislocal-
ization. This pitfall is also relevant for localization criteria such as Box/Approx/Mask IoU, Center
Distance, Mask IoU > 0, Point inside Mask/Box/Approx, and Intersection over Reference (IoR) .
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Boundary-based metrics disregard holes in the segmentation

Fig. SN 2.4. Boundary-based metrics commonly ignore the overlap between structures and are thus
insensitive to holes in structures. In the examples, the Prediction respectively features a hole or spotted
pattern within the object. Boundary-based metrics (here: Normalized Surface Distance (NSD)) do not
recognize this problem, yielding (near) perfect metric scores of 1.0 and 0.9, whereas the volumetric
difference reflects the fact that the inner area is inadequately predicted. NSD was calculated for
𝜏 = 2. This pitfall is also relevant for other boundary-based metrics such as Average Symmetric
Surface Distance (ASSD), Boundary Intersection over Union (Boundary IoU), Hausdorff Distance
(HD), Hausdorff Distance 95th Percentile (HD95), and Mean Average Surface Distance (MASD), as
well as localization criteria such as Center Distance, Mask IoU > 0, Point inside Mask/Box/Appeox,
Boundary IoU, Intersection over Reference (IoR), and Mask IoU.
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Overlap-based metrics are unaware of object centers

Fig. SN 2.5. The most common counting-based metrics are poor proxies for the center point align-
ment. Here, Predictions 1 and 2 yield the same Dice Similarity Coefficient (DSC) value although
Prediction 1 approximates the location of the object much better. This pitfall is also relevant for other
boundary- and overlap-based metrics such as Average Symmetric Surface Distance (ASSD), Boundary
Intersection over Union (IoU), Hausdorff Distance (HD), Hausdorff Distance 95th Percentile (HD95),
IoU, pixel-level F𝛽 Score, and Mean Average Surface Distance (MASD), and localization criteria
such as Box/Approx/Mask IoU, Mask IoU > 0, Point inside Mask/Box/Approx, Boundary IoU, and
Intersection over Reference (IoR).
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Common calibration metrics falsely imply perfect calibration

Fig. SN 2.6. Effect of different definitions of calibration on the Expected Calibration Error (ECE) when
focusing on confidence or predicted class scores (confidence awareness). For top-label calibration,
only the maximum values of the predicted class scores 𝑔(𝑋 ) are considered, while all other values are
neglected, resulting in a perfect calibration for this example. Similarly, for class-wise calibration, the
predicted class scores are compared class-wise per value, also yielding a perfect score. Only canonical
calibration considers all components of the predicted class score vectors, showing that the model
is not perfectly calibrated [28, 61]. A more detailed insight in different definitions of calibration
is given in [44]. It should be noted that discrimination metrics generally do not assess calibration
performance, i.e., perfect discrimination does not imply good calibration performance.
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Comparison of metric scores across data sets may be misleading

Fig. SN 2.7. Effect of prevalence dependency. An algorithm with specific inherent properties (here:
Sensitivity of 0.9 and Specificity of 0.8) may perform completely differently on different data sets if
the prevalences differ (here: 50% (left) and 90% (right)) and prevalence-dependent metrics are used for
validation (here: Accuracy, Positive Predictive Value (PPV), Negative Predictive Value (NPV), F1 Score,
Matthews Correlation Coefficient (MCC), Cohen’s Kappa ^). In contrast, prevalence-independent
metrics (here: Balanced Accuracy (BA), Youden’s Index J, Positive Likelihood Ratio (LR+), and Expected
Cost (EC)) can be used to compare validation results across different data sets. Used abbreviations:
True Positive (TP), False Negative (FN), False Positive (FP) and True Negative (TN). This pitfall is also
relevant for other counting metrics such as Net Benefit (NB).
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Overlap-based metrics prefer oversegmentation over undersegmentation

Fig. SN 2.8. Effect of undersegmentation vs. oversegmentation. The outlines of the predictions of
two algorithms (Prediction 1/2) differ in only a single layer of pixels (Prediction 1: undersegmentation
– smaller structure compared to reference, Prediction 2: oversegmentation – larger structure com-
pared to reference). This has no (or only a minor) effect on the Hausdorff Distance (HD)/(95%), the
Normalized Surface Distance (NSD), MASD, and the Average Symmetric Surface Distance (ASSD),
but yields a substantially different Dice Similarity Coefficient (DSC) or Intersection over Union (IoU)
score [58, 71]. If penalizing of either over- or undersegmentation is desired (unequal severity of class
confusions), other metrics such as the F𝛽 Score provide specific penalties for either depending on
the chosen hyperparameter 𝛽 . This pitfall is also relevant for other overlap-based metrics such as
centerline Dice Similarity Coefficient (clDice) and localization criteria such as Box/Approx/Mask IoU,
Boundary IoU, and Intersection over Reference (IoR).



18

Common metrics disregard cost-benefit analysis

Fig. SN 2.9. Effect of neglecting a cost-benefit analysis. In a cost-benefit analysis, clinicians are
able to define a risk-specific exchange rate that is used in the computation of the Net Benefit (NB)
metric. Common metrics such as Accuracy do not consider this analysis and would favor the marker-
based decision on biopsy, while NB indicates that biopsies of all patients actually yield a better
clinical outcome [65]. This pitfall is also relevant for other counting metrics such as Balanced
Accuracy (BA), Positive Likelihood Ratio (LR+), Matthews Correlation Coefficient (MCC), Negative
Predictive Value (NPV), Positive Predictive Value (PPV), Sensitivity, and Specificity. For binary
problems, the hyperparameter 𝛽 of the F𝛽 Score can be used as a dynamic penalty for class confusions.
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2.2.2 Pitfalls related to disregard of the properties of the target structure. For problems that require
capturing local properties (object detection, semantic or instance segmentation), the properties
of the target structures to be localized and/or segmented may have severe implications for metric
choice. Pitfalls can be further subdivided into size-related and shape- and topology-related pitfalls.
In the following, we present pitfalls stemming from the following sources:

Size-related pitfalls:

• Small structure sizes (Extended Data Fig. 1a and Fig. SN 2.10)
• High variability of structure sizes (Fig. SN 2.11)

Shape- and topology-related pitfalls

• Complex structure shapes (Extended Data Fig. 1b and Fig. SN 2.12)
• Occurrence of overlapping or touching structures (Fig. SN 2.13)
• Occurrence of disconnected structures (Fig. SN 2.14)
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Common localization criteria and overlap-based metrics are sensitive to structure sizes

Fig. SN 2.10. Comparison of Mask and Boundary Intersection over Union (IoU) localization criteria in
the case of particular importance of structure boundaries. Overlapping pixels from the reference and
prediction are shown in light blue. The Mask IoU (second column) is less sensitive to boundary errors
for large objects. The Boundary IoU (third and fourth column) especially considers contours, (1) yields
smaller metric scores, thus penalizing errors in the boundaries, and (2) is more invariant to structure
sizes, leading to very similar values for large and small structures (fourth column) [10]. This pitfall is
also relevant for other overlap-based metrics such as centerline Dice Similarity Coefficient (clDice),
Dice Similarity Coefficient (DSC), and pixel-level F𝛽 Score, as well as localization criteria such as
Box/Approx IoU and Intersection over Reference (IoR).
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Effect of high variability of structure sizes

Fig. SN 2.11. Large structures completely dominate overlap-based metrics in semantic segmentation
problems. While Prediction 1 perfectly segments all three small structures, the metric score (here:
Dice Similarity Coefficient (DSC)) is much worse compared to the score of Prediction 2, with only one
perfect prediction for the large structure. This is highlighted by only computing the metric without
the large structure. This pitfall is also relevant for other overlap-based metrics such as centerline
Dice Similarity Coefficient (clDice), Dice Similarity Coefficient (DSC), and pixel-level F𝛽 Score, as
well as localization criteria such as Mask/Box/Approx Intersection over Union (IoU) and Intersection
over Reference (IoR).
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Common metrics are unaware of object shapes

Fig. SN 2.12. Effect of complex shapes. Common overlap-based metrics such as the Dice Similarity
Coefficient (DSC) are unaware of complex structure shapes and treat Predictions 1 and 2 equally. The
centerline Dice Similarity Coefficient (clDice) uncovers that Prediction 1 misses the fine-granular
branches of the reference and favors Prediction 2, which focuses on the object’s center line and better
captures its fine branches. This pitfall is also relevant for other overlap-based metrics such as Intersec-
tion over Union (IoU) and pixel-level F𝛽 Score, and localization criteria such as Box/Approx/Mask IoU,
Center Distance, Mask IoU > 0, Point inside Mask/Box/Approx, and Intersection over Reference (IoR).
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Common metrics do not account for hierarchical label structure

Fig. SN 2.13. Effect of nested multi-label structures. The requirement of Label 2 being inside Label 1
is violated by Prediction 2. Nevertheless, Prediction 2 has a higher Dice Similarity Coefficient (DSC)
score compared to Prediction 1, which adheres to the requirement. This pitfall is also relevant for
other boundary- and overlap-based metrics such as Average Symmetric Surface Distance (ASSD),
Boundary Intersection over Union (IoU), centerline Dice Similarity Coefficient (clDice), Hausdorff
Distance (HD), Hausdorff Distance 95th Percentile (HD95), IoU, pixel-level F𝛽 Score, Mean Average
Surface Distance (MASD), and Normalized Surface Distance (NSD).
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Bounding boxes are inadequate for representing complex shapes and disconnected struc-
tures

Fig. SN 2.14. Bounding boxes are not well-suited for representing disconnected shapes, in particular
multi-component structures. Predictions 1 and 2 both yield a True Positive (TP) detection, as the Box
Intersection over Union (IoU) is larger than the threshold 0.3. However, Prediction 1 does not hit the
real object at all.
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2.2.3 Pitfalls related to disregard of the properties of the data set and algorithm output. Properties of
the data set such as class imbalances or high inter-rater variability may directly affect metric values.
Pitfalls can be further subdivided into class-related and reference-related pitfalls. For reference-based
metrics, the algorithm output will be compared against the reference annotation to compute a
metric score. Thus, the content and format of the prediction is of high relevance for metric choice.
In the following, we present pitfalls stemming from the following sources:

[P2.3] Disregard of the properties of the data set

• High class imbalance (Figs. 5a and SN 2.15)
• Small test set size (Figs. 5b and SN 2.16)
• Imperfect reference standard (Figs. 5c and SN 2.17)

[P2.4] Disregard of the properties of the algorithm output

• Possibility of empty prediction (Extended Data Fig. 2b and Fig. SN 2.18)
• Possibility of overlapping predictions (Extended Data Fig. 2a and Fig. SN 2.19)
• Lack of predicted class scores (Fig. SN 2.20)
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Common metrics yield implausible results in the presence of class imbalance

Fig. SN 2.15. Effect of class imbalance. Not every metric is designed to reflect class imbalance [11].
In the case of underrepresented classes, an unsuitable metric, such as Accuracy, yields a high value
even if the classifier performs very poorly for one of the classes (here: Prediction 2). Multi-threshold
metrics, such as the Area under the Receiver Operating Characteristic Curve (AUROC) and the
Average Precision (AP), reveal the weakness, indicating that Prediction 2 is not better than random
guessing. For comparison, a no-skill classifier (random guessing) is shown as a black dashed line. For
the Precision-Recall (PR) curves, the interpolation applied to compute the AP metric is shown as a
dashed grey line. Thresholds used for curve generation are provided as small numbers above the curve.
Further abbreviations: Positive Predictive Value (PPV), Negative Predictive Value (NPV), Matthews
Correlation Coefficient (MCC), Weighted Cohen’s Kappa (WCK). This pitfall is also relevant for other
counting metrics such as Net Benefit (NB).
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Common multi-threshold metrics are not well-suited for small sample sizes

Fig. SN 2.16. Effect of calculating the Area under the Receiver Operating Characteristic Curve
(AUROC) for very small sample sizes. The AUROC is very unstable for small sample sizes. Data
sets 1 and 2 only contain six samples each, for which only one predicted score differs between sets.
Drawing the Receiver Operating Characteristic (ROC) curve and calculating the AUROC leads to
a large difference in scores between both data sets. The 95% Confidence Interval (CI) reveals that
there is a large range of possible AUROC values. CIs were calculated based on [19]. This pitfall is
also relevant for other counting metrics such as Accuracy, Average Precision (AP), Balanced Accuracy
(BA), Expected Cost (EC), F𝛽 Score, Free-Response Receiver Operating Characteristic (FROC) Score,
Positive Likelihood Ratio (LR+), Matthews Correlation Coefficient (MCC), Net Benefit (NB), Negative
Predictive Value (NPV), Positive Predictive Value (PPV), Sensitivity, Specificity, andWeighted Cohen’s
Kappa (WCK).
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Common metrics do not account for inter-rater variability

Fig. SN 2.17. Effect of inter-rater variability between two annotators. Assessing the performance of
Annotator 2 while using an reference annotation created by Annotator 1 leads to a low Dice Similarity
Coefficient (DSC) score because inter-rater variability is not taken into account by common overlap-
based metrics. In contrast, the Normalized Surface Distance (NSD), applied with a threshold of
𝜏 = 1, captures this variability. It should be noted, however, that this effect occurs primarily in
small structures as overlap-based metrics tend to be robust to variations in the object boundaries
in large structures. Further abbreviations: Intersection over Union (IoU), Hausdorff Distance (HD),
Hausdorff Distance 95th Percentile (HD95), Average Symmetric Surface Distance (ASSD), Mean
Average Surface Distance (MASD). This pitfall is also relevant for other boundary- and overlap-based
metrics Boundary IoU, centerline Dice Similarity Coefficient (clDice), pixel-level F𝛽 Score and Mean
Average Surface Distance (MASD) and localization criteria such as Mask IoU > 0, Point inside Mask,
Boundary IoU, IoR, and Mask IoU.
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Empty reference or prediction leads to invalid scores

Fig. SN 2.18. Effect of empty references or predictions when applying common metrics per image
(here for semantic segmentation). Empty images lead to division by zero for many common metrics
as the numbers of the TPs, FPs, FNs turn zero. Used abbreviations: Average Symmetric Surface
Distance (ASSD), Dice Similarity Coefficient (DSC), Hausdorff Distance (HD), Hausdorff Distance
95th Percentile (HD95), Intersection over Union (IoU), Mean Average Surface Distance (MASD),
Not a Number (NaN), Normalized Surface Distance (NSD). This pitfall is also relevant for other
boundary-based, overlap-based and counting metrics such as Boundary IoU, centerline Dice Similar-
ity Coefficient (clDice), F𝛽 Score, Negative Predictive Value (NPV), Positive Predictive Value (PPV),
Sensitivity, and Specificity.
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Common segmentation metrics are not well-suited for overlapping structures

Fig. SN 2.19. Effect of overlapping predictions in segmentation problems. In semantic segmentation
problem (SemS; right), overlapping predictions are merged into a single object, yielding a perfect
metric score. Phrasing the problem as an instance segmentation problem reveals that the dark blue
instance is not well-approximated at all. This issue is not revealed by commonmetrics if only semantic
segmentation is performed (here: Dice Similarity Coefficient (DSC)). This pitfall is also relevant for
other boundary- and overlap-based metrics such as Average Symmetric Surface Distance (ASSD),
Boundary Intersection over Union (IoU), centerline Dice Similarity Coefficient (clDice), pixel-level
F𝛽 Score, Hausdorff Distance (HD), Hausdorff Distance 95th Percentile (HD95), IoU, Mean Average
Surface Distance (MASD), and Normalized Surface Distance (NSD).
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Selection of multi-threshold metrics in the absence of predicted class scores

Fig. SN 2.20. Multi-threshold metrics should only be computed if predicted class scores are available,
although an increasing body of work computes multi-threshold metrics such as AP in the absence of
class scores (e.g., [3, 16, 25, 33, 39]). Otherwise, the strategy chosen for compensating the lack of class
scores (here reflected by Implementations 1 and 2) leads to metric scores that are less well interpretable
than those of established counting metrics working on a fixed confusion matrix (here: F1 Score). This
pitfall is also relevant for other multi-threshold metrics such as Area under the Receiver Operating
Characteristic Curve (AUROC) and Free-Response Receiver Operating Characteristic (FROC) Score.
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2.3 Pitfalls related to poor metric application

A data set typically contains several hundreds or thousands of images. When analyzing, aggregating
and combining metric values, a number of factors need to be taken into account.

2.3.1 Pitfalls related to inadequate metric implementation. The implementation of metrics is, unfor-
tunately, not standardized. While some metrics are straightforward to implement, others require
more advanced techniques and offer a variety of implementation possibilities. Sources of metric
implementation pitfalls include:

• Non-standardized definitions (Figs. 6a and SN 2.21)
• Discretization issues (Fig. SN 2.22)
• Sensitivity to hyperparameters (Fig. SN 2.23)
• Metric-specific issues (Fig. SN 2.24)
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Lack of standardization leads to variation in metric scores

Fig. SN 2.21. Effect of defining different ranges for the False Positives per Image (FPPI) (which are
unbounded to the top) used to draw the Free-Response Receiver Operating Characteristic (FROC)
curve for the same prediction (top). The resulting FROC Scores differ for different boundaries of the
x-axis used for the FPPI ([0, 1], [0, 2] and [0, 4]). Publications make use of different ranges for the
x-axis, complicating comparison between works.
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Common metrics suffer from discretization issues

Fig. SN 2.22. Effect of choosing different bins for calculating the Expected Calibration Error (ECE)
and Maximum Calibration Error (MCE). Three different strategies are chosen for the binning of
the interval [0, 1] of the predicted class scores of the Prediction. The resulting metric scores are
substantially affected by the number of bins [29].
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Choice of hyperparameters may have largely impact metric scores

Fig. SN 2.23. Effect of the Intersection over Union (IoU) threshold on the localization (here Box IoU).
(a) When defining a True Positive (TP) by a very loose IoU > 0, the resulting localizations may be
deceived by very large predictions. (b) On the other hand, a strict IoU criterion may be problematic
when the bounding box does not approximate the target structure shapes well. Although Predictions
1 and 2 are very similar (differing in one pixel in one dimension), only Prediction 1 is a TP because the
number of bounding box pixels increases quadratically with the size of diagonal narrow structures.
Further abbreviation: False Positive (FP).
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Per-class tuning of the decision threshold yields misleading results

Fig. SN 2.24. Effect of the determination of a global threshold for all classes based on a single class.
In a data set of three classes and nine images, the Area under the Receiver Operating Characteristic
Curve (AUROC) score is 1.0 for every class. In practice, however, a global decision threshold needs to
be set in multi-class problems, which typically renders substantially worse results. Here, the optimal
threshold for Class 1 yields poor results for Classes 2 and 3 (see e.g., [17, 37]). Used abbreviations:
Positive Predictive Value (PPV), Negative Predictive Value (NPV), Matthews Correlation Coefficient
(MCC), Cohen’s Kappa ^, and Balanced Accuracy (BA).
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2.3.2 Pitfalls related to inadequate metric aggregation. When aggregating metric values over multi-
ple cases (data points), the method of metric aggregation should be clearly defined and reported
including details for example on the aggregation operator (e.g., mean or median) and missing value
handling. In addition, special care should be taken when aggregating across classes or different
hierarchy levels. Pitfalls can be further subdivided into class-related and data set-related pitfalls. In
the following, we present pitfalls stemming from the following sources:

Class-related pitfalls

• Hierarchical label structure (Fig. SN 2.25)
• Multi-class problem (Fig. SN 2.26)

Data set-related pitfalls

• Non-independence of test cases (Figs. 6b and SN 2.27)
• Risk of bias (Fig. SN 2.28)
• Possibility of invalid prediction (Fig. SN 2.29)
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Standard aggregation schemes disregard hierarchical class structures

Fig. SN 2.25. Classes in categorical classification may be hierarchically structured, for example in the
form of multiple positive classes and one negative class. The phrasing of the problem as binary vs.
multi-class hugely affects the validation result. Binary classification (middle), differentiating triangles
from circles, yields a good Accuracy, while per-class validation yields a poor score because the two
circle classes cannot be distinguished well. Incorrect predictions are overlaid by a red shape of the
correct reference class.
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Lack of per-class validation conceals important information

Fig. SN 2.26. Effect of ignoring the presence of multiple classes when aggregating metric values
(here: using the mean). The overall average of all Dice Similarity Coefficient (DSC) scores for the
four images is 0.7. Averaging per class reveals a very low performance for Classes 2 and 3. ∅ refers to
the average DSC values.
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Inter-class dependencies are concealed in standard aggregation schemes

Fig. SN 2.27. Effect of interdependencies between classes. A prediction may show a near-perfect
Accuracy score of 0.94 for the dark blue triangle as it frequently appears in conjunction with the
orange square. By calculating the Accuracy in the presence and absence of the orange square class, it
can be seen that the algorithm only works well in the presence of the orange square class.
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Lack of stratification conceal biases

Fig. SN 2.28. Effect of disregarding relevant meta-information (here: gender). When ignoring the
available meta-information of the patient’s gender per image, any metric (here: Accuracy) fails to
reveal that the algorithm performs much better for men compared to women. In this example, correct
predictions are marked by a green check mark, incorrect predictions by a red cross.
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Lack of missing data handling strategy yields misleading results

Fig. SN 2.29. Effect of invalid predictions (missing values) when aggregating metric values. In this
example, ignoring missing values leads to a substantially higher Dice Similarity Coefficient (DSC))
compared to setting missing values to the worst possible value (here: 0).
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2.3.3 Pitfalls related to inadequate ranking scheme. Rankings are often created to compare algorithm
performances. In this context, we present pitfalls stemming from the following sources:

• Metric relationships (Fig. SN 2.30)
• Ranking uncertainty (Fig. SN 2.31)

Related metrics may yield identical rankings

Fig. SN 2.30. Effect of using mathematically closely related metrics. The Dice Similarity Coefficient
(DSC) and Intersection over Union (IoU) typically lead to the same ranking, whereas metrics from
different families (here: Hausdorff Distance (HD)) may lead to substantially different rankings [58, 59].
Combining metrics that are related will not provide additional information for a ranking, and having
multiple metrics measuring the same properties may overrule rankings of other properties (here:
HD).
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Ranking tables do not reflect ranking uncertainty

Fig. SN 2.31. Effect of ranking uncertainty. The results of two benchmarking experiments with
five algorithms 𝐴1-𝐴5 differ substantially, as shown by the boxplots of the metric values for every
algorithm. While the left situation introduces a clear ranking visible from the boxplots, the right use
case is not clear as performance is very similar across algorithms. However, both situations lead to
the same ranking [43, 69]. Thus, solely providing ranking tables conceals information on ranking
uncertainty.
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2.3.4 Pitfalls related to inadequate metric reporting. A thorough reporting of metric values and
aggregates is important both in terms of transparency and interpretability. However, several pitfalls
are to be avoided in this regard. Sources of metric reporting pitfalls include:

• Non-determinism of algorithms (Fig. SN 2.32)
• Uninformative visualization (Figs. 6c and SN 2.33)

The non-determinism of neural networks effects metric results

Fig. SN 2.32. Effect of non-determinism of artificial intelligence (AI) algorithms. An algorithm trained
under identical conditions may yield different results when changing seeds (left), but also with
fixed seeds (right). The latter may, for example, be caused by parallel processes, order of threads,
auto-selection of primitive operations, and other factors [51]3. Fixing seeds does not guarantee
reproducibility even for the same hardware/software configuration as many software libraries have a
degree of randomness on their operations.

3See for example: https://pytorch.org/docs/stable/notes/randomness.html

https://pytorch.org/docs/stable/notes/randomness.html
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Common visualization schemes conceal relevant information

Fig. SN 2.33. Effect of different visualization types. A single boxplot (top left) does not provide
sufficient information about the rawmetric value distribution (here: Dice Similarity Coefficient (DSC)).
Using a violin plot (top right) or adding the raw metric values as jittered dots on top (bottom left)
adds important information. In the case of non-independent validation data, color/shape-coding
helps reveal data clusters (bottom right).
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2.3.5 Pitfalls related to inadequate interpretation of metric values. Interpreting metric scores and
aggregates is an important step in algorithm performance analysis. However, several pitfalls can
arise from interpretation. In the following, we present pitfalls related to:

• Low resolution (Fig. SN 2.34)
• Lack of upper/lower bounds (Fig. SN 2.35)
• Insufficient domain relevance of metric score differences (Fig. SN 2.36)
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Image resolution affects metric scores

Fig. SN 2.34. Effect of different grid sizes. Differences in the grid size (resolution) of an image highly
influence the image and the reference annotation (dark blue shape (reference) vs. pink outline
(desired circle shape)), with a prediction of the exact same shape leading to different metric scores.
Abbreviations: Dice Similarity Coefficient (DSC), Intersection over Union (IoU), Hausdorff Distance
(HD), Hausdorff Distance 95th Percentile (HD95), Average Symmetric Surface Distance (ASSD), Mean
Average Surface Distance (MASD), Normalized Surface Distance (NSD).
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Lower bounds of metrics may not be achievable in practice

Fig. SN 2.35. Effect of theoretical bounds that may not be achievable in practice. In this multi-
class example, all samples were predicted incorrectly. However, the theoretical lowest value for the
Matthews Correlation Coefficient (MCC) metric (-1) cannot be achieved in this situation, rendering
interpretation difficult.
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Metric score differences leading to different rankings may be irrelevant

Fig. SN 2.36. Effect of irrelevant metric score differences in rankings. The difference of the metric
score aggregates of algorithms A1 and A2 is extremely low and not of biomedical relevance. However,
the numerical difference would assign them different ranks.
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SUPPL. NOTE 3 METRIC PROFILES

This section presents profiles for the metrics deemed particularly relevant by the Metrics Reloaded
consortium [44]. For each metric, the respective description, formula, and value range (upward
arrow: higher values better than lower values; downward arrow: lower values are better than higher
values) are provided, along with further important characteristics, such as the used cardinalities of
a confusion matrix, or potential prevalence dependency. Finally, relevant pitfalls are highlighted.
Many of the presented metrics rely on the confusion matrix, which is illustrated in Fig. SN 3.37.

Fig. SN 3.37. Schematic example of the confusion matrix for two and for𝐶 classes. For the latter case, we also
present a weight or cost matrix with weights 𝑤𝑖 𝑗 > 0 without loss of generality. For the binary confusion
matrix, we show an example illustrating the cardinalities for a prediction of triangles and circles.
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3.1 Discrimination metrics

3.1.1 Counting metrics. +

Fig. SN 3.38. Metric profile of Accuracy. The upward arrow in the value range indicates that higher values are
better than lower values. Abbreviations: False Negative (FN), False Positive (FP), Instance Segmentation (InS),
Object Detection (ObD), True Negative (TN), True Positive (TP). Reference: Tharwat, 2020: [60]. Mentioned
figures: Figs. 4b, 5a, SN 2.7, SN 2.9, SN 2.15.
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Fig. SN 3.39. Metric profile of Balanced Accuracy (BA). The upward arrow in the value range indicates that
higher values are better than lower values. Abbreviations: False Negative (FN), False Positive (FP), Instance
Segmentation (InS), Object Detection (ObD), Positive Predictive Value (PPV), True Negative (TN), True
Positive (TP). References: Grandini et al., 2020: [27], Maier-Hein et al., 2022: [44], Reinke et al., 2021: [54],
Tharwat, 2020: [60]. Mentioned figures: Figs. 4b, 5a, SN 2.9.



54

Fig. SN 3.40. Metric profile of centerline Dice Similarity Coefficient (clDice). The upward arrow in the value
range indicates that higher values are better than lower values. Abbreviations: False Negative (FN), False
Positive (FP), True Negative (TN), True Positive (TP). Reference: Shit et al., 2021: [57]. Mentioned figures:
Extended Data Fig. 1a, Figs. SN 2.8, SN 2.10, SN 2.11, SN 2.17, SN 2.18.
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Fig. SN 3.41. Metric profile of Dice Similarity Coefficient (DSC). The upward arrow in the value range indicates
that higher values are better than lower values. Abbreviations: False Negative (FN), False Positive (FP), Positive
Predictive Value (PPV), True Negative (TN), True Positive (TP). References: Dice, 1945: [20], Reinke et al., 2021:
[54]. Mentioned figures: Figs. 4a, SN 2.5, SN 2.8, SN 2.10, SN 2.11, SN 2.12, SN 2.17, SN 2.18, Extended Data
Fig. 1a-b.
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Fig. SN 3.42. Metric profile of Expected Cost (EC). The downward arrow in the value range indicates that
lower values are better than higher values. Abbreviations: False Negative (FN), False Positive (FP), True
Negative (TN), True Positive (TP). References: Bishop and Nasrabadi, 2006: [7], Ferrer 2022: [24], Hastie et al.,
2009: [32], Maier-Hein et al., 2022: [44].
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Fig. SN 3.43. Metric profile of F𝛽 Score.[12, 63]. The upward arrow in the value range indicates that higher
values are better than lower values. Abbreviations: Dice Similarity Coefficient (DSC), False Negative (FN), False
Positive (FP), Positive Predictive Value (PPV), True Negative (TN), True Positive (TP).References: Chinchor
1992: [12], Reinke et al., 2021: [54], Van Rijsbergen, 1979: [63]. Mentioned figures: Figs. 4a, SN 2.5, SN 2.7,
SN 2.10, SN 2.12, SN 2.15, SN 2.17, SN 2.18, Extended Data Figs. 1a-b and 2b.
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Fig. SN 3.44. Metric profile of False Positives per Image (FPPI). The upward arrow in the value range indicates
that higher values are better than lower values. Abbreviations: False Negative (FN), False Positive (FP), Free-
Response Receiver Operating Characteristic (FROC), True Negative (TN), True Positive (TP). References:
Bandos et al., 2009: [5], Reinke et al., 2021: [54], Van Ginneken et al., 2010: [62]. Mentioned figure: Fig. SN 2.21.



Supplementary Notes – Understanding metric-related pitfalls 59

Fig. SN 3.45. Metric profile of Intersection over Union (IoU). The upward arrow in the value range indicates
that higher values are better than lower values. Abbreviations: False Negative (FN), False Positive (FP), Positive
Predictive Value (PPV), True Negative (TN), True Positive (TP). References: Jaccard, 1912: [35], Reinke et al.,
2021: [54]. Mentioned figures: Figs. 4a, SN 2.5, SN 2.8, SN 2.10, SN 2.11, SN 2.12, SN 2.17, SN 2.18, Extended
Data Fig. 1a-b.
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Fig. SN 3.46. Metric profile of Matthews Correlation Coefficient (MCC). The upward arrow in the value
range indicates that higher values are better than lower values. Abbreviations: Expected Cost (EC), False
Negative (FN), False Positive (FP), Instance Segmentation (InS), Object Detection (ObD), True Negative (TN),
True Positive (TP). References: Ferrer, 2022: [24], Matthews, 1975: [46], Reinke et al., 2021: [54], Zhu, 2020:
[72]. Mentioned figures: Figs. 4b, SN 2.7, SN 2.9, SN 2.35.
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Fig. SN 3.47. Metric profile of Net Benefit (NB). The upward arrow in the value range indicates that higher
values are better than lower values. Abbreviations: Expected Cost (EC), False Negative (FN), False Positive (FP),
True Negative (TN), True Positive (TP). References: Ferrer, 2022: [24], Vickers and Elkin, 2006: [64], Vickers et
al., 2016: [65]. Mentioned figure: Fig. SN 2.20.
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Fig. SN 3.48. Metric profile of Negative Predictive Value (NPV). The upward arrow in the value range indicates
that higher values are better than lower values. Abbreviations: False Negative (FN), False Positive (FP), Instance
Segmentation (InS), Object Detection (ObD), True Negative (TN), True Positive (TP). References: Reinke et al.,
2021: [54], Tharwat, 2020: [60]. Mentioned figures: Figs. 4b, SN 2.7, SN 2.9, SN 2.15, SN 2.18, Extended Data
Fig. 2b.
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Fig. SN 3.49. Metric profile of Panoptic Quality (PQ). The upward arrow in the value range indicates that
higher values are better than lower values. Abbreviations: Average Precision (AP), False Negative (FN), False
Positive (FP), Free-Response Receiver Operating Characteristic (FROC), Intersection over Union (IoU), True
Negative (TN), True Positive (TP). References: Kirillov et al., 2019: [36], Reinke et al., 2021: [54].
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Fig. SN 3.50. Metric profile of Positive Likelihood Ratio (LR+). The upward arrow in the value range indicates
that higher values are better than lower values. Abbreviations: False Negative (FN), False Positive (FP),
Instance Segmentation (InS), Object Detection (ObD), Positive Predictive Value (PPV), True Negative (TN),
True Positive (TP). References: Attia, 2003: [2], Reinke et al., 2021: [54]. Mentioned figures: Figs. 4b, 5a, SN 2.9,
SN 2.18, Extended Data Fig. 2b.
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Fig. SN 3.51. Metric profile of the Positive Predictive Value (PPV). The upward arrow in the value range
indicates that higher values are better than lower values. Abbreviations used in the figure: False Negative
(FN), False Positive (FP), Instance Segmentation (InS), Object Detection (ObD), True Negative (TN), True
Positive (TP). References used in the figure: Reinke et al., 2021: [54], Tharwat, 2020: [60]. Mentioned figures:
Figs. 4b, SN 2.7, SN 2.9, SN 2.15, SN 2.18, Extended Data Fig. 2b.
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Fig. SN 3.52. Metric profile of Sensitivity. The upward arrow in the value range indicates that higher values
are better than lower values. Abbreviations: False Negative (FN), False Positive (FP), Object Detection (ObD),
Positive Predictive Value (PPV), True Negative (TN), True Positive (TP). References: Maier-Hein et al., 2022:
[44], Reinke et al., 2021: [54], Tharwat, 2020: [60]. Mentioned figures: Figs. 4b, SN 2.9, SN 2.18, Extended Data
Fig. 2b.
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Fig. SN 3.53. Metric profile of Specificity. The upward arrow in the value range indicates that higher values
are better than lower values. Abbreviations: False Negative (FN), False Positive (FP), True Negative (TN), True
Positive (TP). References: Reinke et al., 2021: [54], Tharwat, 2020: [60]. Mentioned figures: Figs. 4b SN 2.9,
SN 2.18, Extended Data Fig. 2b.
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Fig. SN 3.54. Metric profile of Weighted Cohen’s Kappa (WCK). The upward arrow in the value range
indicates that higher values are better than lower values. Abbreviations: Balanced Accuracy (BA), Cohen’s
Kappa (CK), Expected Cost (EC), False Negative (FN), False Positive (FP), Instance Segmentation (InS), Object
Detection (ObD), True Negative (TN), True Positive (TP). References: Cohen, 1960: [13], Delgado and Tibau,
2019: [18], Ferrer, 2022: [24], Powers, 2012: [53], Reinke et al., 2021: [54], Warrens, 2012: [67]. Mentioned
figures: Figs. SN 2.7, SN 2.15, SN 2.35.
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3.1.2 Multi-threshold metrics.

Fig. SN 3.55. Metric profile of Area under the Receiver Operating Characteristic Curve (AUROC). The upward
arrow in the value range indicates that higher values are better than lower values. Abbreviations: False
Negative (FN), False Positive (FP), Instance Segmentation (InS), Object Detection (ObD), Receiver Operating
Characteristic (ROC), True Negative (TN), True Positive (TP). References: Hanley and McNeil, 1982: [31],
Reinke et al., 2021: [54]. Mentioned figures: Figs. 5a, SN 2.1, SN 2.16, SN 2.20.
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Fig. SN 3.56. Metric profile of Average Precision (AP). The upward arrow in the value range indicates that
higher values are better than lower values. Abbreviations: Area under the Receiver Operating Characteristic
Curve (AUROC), False Negative (FN), False Positive (FP), Instance Segmentation (InS), Object Detection (ObD),
Precision-Recall (PR), True Negative (TN), True Positive (TP). References: Everingham et al., 2015: [22], Lin
et al., 2014: [42], Maier-Hein et al., 2022: [44], Reinke et al., 2021: [54]. Mentioned figures: Figs. 6a, SN 2.7,
SN 2.20.
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Fig. SN 3.57. Metric profile of Free-Response Receiver Operating Characteristic (FROC). The upward arrow in
the value range indicates that higher values are better than lower values. Abbreviations: False Negative (FN),
False Positive (FP), False Positives per Image (FPPI), True Negative (TN), True Positive (TP). References: Van
Ginneken et al., 2010: [62]. Mentioned figures: Figs. SN 2.20, SN 2.21.
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3.1.3 Distance-based metrics.

Fig. SN 3.58. Metric profile of Average Symmetric Surface Distance (ASSD). The downward arrow in the value
range indicates that lower values are better than higher values. Abbreviation: Semantic Segmentation (SemS).
References: Reinke et al., 2021: [54], Yeghiazaryan, Varduhi and Voiculescu, 2015: [70]. Mentioned figures:
Figs. 5c, SN 2.4, SN 2.17, SN 2.18.
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Fig. SN 3.59. Metric profile of the Boundary Intersection over Union (IoU). The upward arrow in the value
range indicates that higher values are better than lower values. References: Cheng et al., 2021: [10], Reinke et
al., 2021: [54]. Mentioned figures: Figs. 5c, SN 2.4, SN 2.17, SN 2.18.
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Fig. SN 3.60. Metric profile of Hausdorff Distance (HD). The downward arrow in the value range indicates
that lower values are better than higher values. Abbreviation: Semantic Segmentation (SemS). References :
Huttenlocher, 1993: [34], Reinke et al., 2021: [54]. Mentioned figures: Figs. 5c, SN 2.4, SN 2.17, SN 2.18.
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Fig. SN 3.61. Metric profile of Mean Average Surface Distance (MASD). The downward arrow in the value
range indicates that lower values are better than higher values. Abbreviation: Semantic Segmentation (SemS).
References: Beneš and Zitová, 2015: [6], Reinke et al., 2021: [54]. Mentioned figures: Figs. 5c, SN 2.4, SN 2.17,
SN 2.18.
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Fig. SN 3.62. Metric profile of Normalized Surface Distance (NSD). The upward arrow in the value range
indicates that higher values are better than lower values. Abbreviation: Dice Similarity Coefficient (DSC).
References: Nikolov et al., 2021: [50], Reinke et al., 2021: [54]. Mentioned figures: Figs. SN 2.4, SN 2.18.
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Fig. SN 3.63. Metric profile of Xth Percentile of Hausdorff Distance (HD). The downward arrow in the value
range indicates that lower values are better than higher values. Abbreviations: Hausdorff Distance (HD),
Semantic Segmentation (SemS). References: Huttenlocher, 1993: [34], Reinke et al., 2021: [54]. Mentioned
figures: Figs. SN 2.4, SN 2.17, SN 2.18.
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3.2 Calibration metrics

Fig. SN 3.64. Metric profile of Brier Score (BS). The downward arrow in the value range indicates that lower
values are better than higher values. Abbreviation: Brier Skill Score (BSS). References: Gneiting and Raftery,
2007: [26], Reinke et al., 2021: [54]. Mentioned figure: Fig. SN 2.7.
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Fig. SN 3.65. Metric profile of Class-Wise Calibration Error (CWCE). The downward arrow in the value range
indicates that lower values are better than higher values. References: Kumar et al., 2019: [41], Kull et al., 2019:
[40]. Mentioned figures: Figs. 5b, SN 2.6, SN 2.22.
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Fig. SN 3.66. Metric profile of Expected Calibration Error (ECE). The downward arrow in the value range
indicates that lower values are better than higher values. References: Maier-Hein et al., 2022: [44], Naeini et
al., 2015: [47], Reinke et al., 2021: [54]. Mentioned figures: Figs. 5b, SN 2.6, SN 2.22.
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Fig. SN 3.67. Metric profile of Expected Calibration Error Kernel Density Estimate (ECEKDE). The downward
arrow in the value range indicates that lower values are better than higher values. Abbreviation: Expected
Calibration Error (ECE). Reference used in the figure: Popordanoska et al., 2022: [52].
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Fig. SN 3.68. Metric profile of Kernel Calibration Error (KCE). References: Gruber and Buettner, 2022: [28],
Widmann et al., 2019: [68].
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Fig. SN 3.69. Metric profile of Negative Log Likelihood (NLL). The downward arrow in the value range
indicates that lower values are better than higher values. References: Cybenko et al., 1998: [14], Popordanoska
et al., 2022: [52], Reinke et al., 2021: [54]. Mentioned figure: Fig. 5b.
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Fig. SN 3.70. Metric profile of Root Brier Score (RBS). The downward arrow in the value range indicates that
lower values are better than higher values. Reference: Gruber and Buettner, 2022: [28].



Supplementary Notes – Understanding metric-related pitfalls 85

3.3 Localization criteria

Fig. SN 3.71. Metric profile of the Boundary Intersection over Union (IoU) localization criterion. The upward
arrow in the value range indicates that higher values of Boundary IoU are better than lower values. References:
Cheng et al., 2021: [10], Reinke et al., 2021: [54]. Mentioned figures: Figs. SN 2.4, SN 2.18.
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Fig. SN 3.72. Metric profile of the Center Distance localization criterion. The downward arrow in the value
range indicates that lower values of the Center Distance are better than higher values. References: Gurcan et
al., 2010: [30], Reinke et al., 2021: [54].
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Fig. SN 3.73. Metric profile of the Intersection over Reference (IoR) localization criterion. The upward arrow
in the value range indicates that higher values of IoR are better than lower values. Abbreviations: False
Negative (FN), False Positive (FP), True Negative (TN), True Positive (TP). References: Maška et al., 2014: [45],
Reinke et al., 2021: [54]. Mentioned figures: Figs. 4a, SN 2.5, SN 2.8, SN 2.10, SN 2.11, SN 2.12, SN 2.18, SN 2.23,
Extended Data Fig. 1b.
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Fig. SN 3.74. Metric profile of the Mask/Box/Approx Intersection over Union (IoU) localization criterion.
Abbreviations: False Negative (FN), False Positive (FP), True Negative (TN), True Positive (TP). References:
Jaccard, 1912: [35], Reinke et al., 2021: [54]. Mentioned figures: Figs. 4a, SN 2.5, SN 2.8, SN 2.10, SN 2.11,SN 2.12,
SN 2.14, SN 2.17, SN 2.18, SN 2.23, Extended Data Fig. 1a-b.
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Fig. SN 3.75. Metric profile of the Mask Intersection over Union (IoU) > 0 localization criterion. Abbreviations:
False Negative (FN), False Positive (FP), True Negative (TN), True Positive (TP). References: Jaccard, 1912:
[35], Wack et al., 2012: [66]. Mentioned figure: Fig. SN 2.23.
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Fig. SN 3.76. Metric profile of Point insideMask/Box/Approximation. References: https://cada.grand-challenge.
org/Assessment/, Reinke et al., 2021: [54].

https://cada.grand-challenge.org/Assessment/
https://cada.grand-challenge.org/Assessment/
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3.4 Assignment strategies

Fig. SN 3.77. Cheat Sheet for the Greedy (by Score) Matching. Reference used in the figure: Everingham et
al., 2015: [23].
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Fig. SN 3.78. Cheat Sheet for the Greedy (by Localization Criterion) Matching. Reference used in the figure:
Maier-Hein et al., 2022: [44].
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Fig. SN 3.79. Cheat Sheet for the Optimal (Hungarian) Matching. References used in the figure: Kuhn et al.,
1955: [38], Maier-Hein et al., 2022: [44].
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Fig. SN 3.80. Cheat Sheet for the Matching via Overlap > 0.5. References used in the figure: Everingham et
al., 2006: [21], Maier-Hein et al., 2022: [44].
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SUPPL. NOTE 4 ACRONYMS

AI artificial intelligence
AP Average Precision
ASSD Average Symmetric Surface Distance
AUC Area under the Curve
AUROC Area under the Receiver Operating Characteristic Curve
BA Balanced Accuracy
BIAS Biomedical Image Analysis ChallengeS
Boundary IoU Boundary Intersection over Union
BS Brier Score
BSS Brier Skill Score
CI Confidence Interval
clDice centerline Dice Similarity Coefficient
COCO Common Objects in Context
CK Cohen’s Kappa
CWCE Class-Wise Calibration Error
DSC Dice Similarity Coefficient
EC Expected Cost
ECE Expected Calibration Error
ECEKDE Expected Calibration Error Kernel Density Estimate
FN False Negative
FP False Positive
FPPI False Positives per Image
FROC Free-Response Receiver Operating Characteristic
HD Hausdorff Distance
HD95 Hausdorff Distance 95th Percentile
InS Instance Segmentation
IoU Intersection over Union
IoR Intersection over Reference
LR+ Positive Likelihood Ratio
KCE Kernel Calibration Error
mAP mean Average Precision
MASD Mean Average Surface Distance
MCC Matthews Correlation Coefficient
MCE Maximum Calibration Error
MICCAI Medical Image Computing and Computer Assisted Interventions
MONAI Medical Open Network for Artificial Intelligence
NaN Not a Number
NB Net Benefit
NPV Negative Predictive Value
NLL Negative Log Likelihood
NSD Normalized Surface Distance
PPV Positive Predictive Value
ObD Object Detection
PQ Panoptic Quality
PR Precision-Recall
RBS Root Brier Score
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ROC Receiver Operating Characteristic
SemS Semantic Segmentation
TN True Negative
TNR True Negative Rate
TP True Positive
TPR True Positive Rate
WCK Weighted Cohen’s Kappa
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