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SUMMARY
Follicular lymphoma (FL) is a generally incurable malignancy that evolves from developmentally blocked
germinal center (GC) B cells. To promote survival and immune escape, tumor B cells undergo significant ge-
netic changes and extensively remodel the lymphoid microenvironment. Dynamic interactions between tu-
mor B cells and the tumor microenvironment (TME) are hypothesized to contribute to the broad spectrum
of clinical behaviors observed among FL patients. Despite the urgent need, existing clinical tools do not reli-
ably predict disease behavior. Using amulti-modal strategy, we examined cell-intrinsic and -extrinsic factors
governing progression and therapeutic outcomes in FL patients enrolled onto a prospective clinical trial. By
leveraging the strengths of each platform, we identify several tumor-specific features and microenviron-
mental patterns enriched in individuals who experience early relapse, the most high-risk FL patients. These
features include stromal desmoplasia and changes to the follicular growth pattern present 20 months before
first progression and first relapse.
INTRODUCTION

A chief aim of several international consortia is the construction

of organ atlases using next-generation sequencing and spatial

approaches.1–4 The cellular and structural diversity of the lymph

node (LN), along with its frequent involvement in metastasis and

hematological malignancies,5,6 warrants construction of high-
444 Cancer Cell 42, 444–463, March 11, 2024 Published by Elsevier I
resolution atlases of normal andmalignant human LNs. These re-

sources may aid with clinical decision-making by identifying

spatial patterns associated with inferior prognosis, stratifying tu-

mor subtypes by risk, and highlighting mechanisms of therapeu-

tic resistance.

Among the primary malignancies of the lymphatic system,

follicular lymphoma (FL) is of special interest for multi-omic
nc.
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examination. FL is a malignancy of germinal center (GC) B cell

origin that extensively remodels the normal lymphoid tissue

microenvironment. The disease trajectory of FL patients is het-

erogeneous, with many patients slowly progressing over several

years, and a subset of patients experiencing an aggressive clin-

ical course, often involving histologic transformation into diffuse

large B cell lymphoma or other high-grade B cell lymphomas.7–10

In rare instances, spontaneous remission may occur and is

thought to require the generation of an antitumor response

following immunologic stimuli.11 Patients who experience

progression of disease within 24 months of initial treatment,

termed early relapsers, are the subset with the shortest overall

survival and are considered the highest risk.10,12–15 Despite

the urgent clinical need, a predictive tool and consensus treat-

ment approach for early relapsers does not exist.13 Therefore,

a greater understanding of the cell-intrinsic and -extrinsic factors

governing progression and therapeutic outcomes is needed for

risk-adapted management of FL patients.

FL B cells exhibit genomic and epigenomic alterations that

enable immune escape, apoptosis resistance, disease progres-

sion, and, in certain patients, histologic transformation.7,9,16,17

The tumor microenvironment (TME) plays an integral role in sup-

porting the survival of malignant cells throughout the course of

disease.18 Importantly, no single approach can describe the

cellular composition of normal LNs, nor identify transcriptomic

and histological signatures associated with poor survival in FL

patients.19 To overcome these challenges, we employ advanced

sequencing and imaging technologies to generate a molecular

and spatial atlas of normal and malignant LNs. We extend key

spatial findings to a larger, clinically annotated cohort to reveal

architectural changes and cellular communities enriched in

high-risk FL patients. In summary, our multiscale analysis of

normal and malignant human LNs constitutes a valuable

resource for discovery and translational research efforts.

RESULTS

Building a cell- and tissue-level atlas using diverse
lymphoid tissue sources
To create atlases of normal and FL LNs, we used state-of-the-art

sequencing and iterative bleaching extends multiplexity (IBEX)

imaging20,21 (Figure 1). The study examined excisional LN bi-

opsies from an ongoing clinical trial [NCT03190928], mesenteric

LNs deemed grossly normal (nLN1-2), and a reactive LN (rLN1).

The clinical cohort included FL patients identified as non-pro-

gressors at least 2 years from study entry, progressors within

2 years, or early relapsers (*) (Figure 1A, Table S1, and Figure S1).

Excisional biopsies from FL patients, taken prior to any therapy,

were analyzed using bulk RNA sequencing (RNA-seq), single-

cell RNA-seq (scRNA-seq), IBEX imaging, and additionally pre-

pared as formalin-fixed, paraffin embedded (FFPE) samples for

routine diagnostic pathology and multiplexed immunofluores-

cence (MxIF) imaging (Figure 1B). IBEX imaging was performed

with the nuclear marker Hoechst and 39 antibodies targeting

diverse cell types in regions of interest averaging 4–12 mm2.

This approach revealed unique histological patterns that could

be examined in larger regions (�37–115 mm2) from clinically

relevant FFPE samples using key markers identified from the

IBEX data (Figures 1C and 1D). Several methods were inte-
grated, resulting in the construction of a molecular and cellular

atlas of normal and malignant LNs across scales and modalities

(Figure 1E, Table S2). To test the validity of the spatial findings

from the discovery cohort, we performed whole slide imaging

(�7–180 mm2) in a larger cohort using the Cell DIVE22 and our

dye inactivation protocol,20,21 termed Cell DIVE-IBEX here and

throughout (Figures 1E, S1, and Table S2).

Genomic and transcriptomic characterization of FL
heterogeneity
We first evaluated the genomic and transcriptomic landscapes

of tumor B cells with whole-exome sequencing and bulk

RNA-seq. In addition to the expected translocations in the

gene encoding the anti-apoptotic protein BCL2 (Table S1),

diverse genetic lesions were identified in recurrently mutated

genes previously associated with FL pathogenesis (Figure 2A).7

Alterations in chromatin-modifying genes such as KMT2D,

EZH2, ARID1A, and CREBBP, as well as genes involved in cell

migration and immune regulation (CXCR4, TNFRSF14, CIITA),7

were observed in progressors and non-progressors alike (Fig-

ure 2A). The cellular composition of FL samples was next evalu-

ated by a deconvolution algorithm23 for data derived from bulk

RNA-seq (Figure 2B, Tables S3, and S4). B cells were the most

abundant cell type, representing more than 60% of deconvolved

cells from bulk analysis (Table S2). Myeloid and stromal cells,

representing less than 2% of deconvolved cells per sample,

were broadly classified as macrophages, monocytes, fibro-

blasts, and endothelial cells using lineage-specific genes

(Tables S2, S3, and S4). In addition to analyzing the cellular

composition of FL patient samples, malignant B cell receptor

(BCR) sequences were identified from bulk RNA-seq based on

the fraction of dominant immunoglobulin (Ig) sequences (Fig-

ure 2C).24 Dominant clones were found in all patients except

FL-1, a spontaneous remitter (Table S1). To further evaluate

the clonal repertoire of FL B cells and overcome challenges

arising from matching heavy and light chains from bulk suspen-

sions, 50 scRNA-seq was also performed (Figure 2C). The malig-

nant Ig repertoires identified from bulk and scRNA-seq showed a

similar monoclonal Ig distribution for all samples except for FL-1,

confirming the utility of using bulk RNA-seq to deconstruct B cell

clonotypes.

Cellular composition of human LNs using scRNA-seq
To evaluate gene expression profiles at single-cell resolution, we

performed scRNA-seq on samples from this same cohort of FL

patients. We additionally extended our studies to healthy LNs

as a control and potential resource for LN atlas building efforts

(Figures 2D–2F, S2A, and Table S2). Lymphoid populations var-

ied in their relative abundance across samples (Figures 2F, S2A,

and Table S2). These populations included naive follicular B cells

(MS4A1, CD19, FCER2, SELL), GC B cells (CD83, GMDS,

AICDA, BCL6, CD81), cycling B cells (MK167, UBE2C, CD81),

and tumor B cells (BCL2, MME, TCF4) found only in FL samples

(Figures 2E and 2F). Analysis of T cells revealed subpopulations

of CD4+ and CD8+ T cells including T regulatory cells (Tregs,

FOXP3, CTLA4, IKZF2, TIGIT), T follicular helper cells (Tfh,

PDCD1 (PD-1), ICOS, TOX2, TIGIT), and distinct populations of

CD8+ T cells expressing several cytotoxic (GZMA, PRF1,

NKG7) and exhaustion/activation-related (LAG3, HAVCR2
Cancer Cell 42, 444–463, March 11, 2024 445



Figure 1. Construction of LN atlases using multiple omics and imaging technologies

(A) Tissues were profiled from non-FL and FL LNs. Schematic shows enlarged and stylized follicles.

(B) Paired samples from normal and FL patients were profiled usingmultiple assays. Normal LNs were examined only by single-cell technologies (scRNA-seq and

IBEX). Tissue microenvironment (TME), multiplex immunofluorescence (MxIF).

(C) Schematic depicting IBEX imaging technique.

(D) Protein biomarkers targeted with IBEX or MxIF (*) grouped by cell type.

(E) Comparison of information provided by each technology for each cohort. Resolution provided as an estimate only and based on analyses described in this

work. See also Figure S1, Tables S1, and S2.
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(TIM-3), TIGIT) markers. These ‘‘exhausted CD8+ T cells’’ were

nearly absent from non-FL LNs but enriched in rLN1 and LNs

from FL patients, suggesting chronic inflammatory reactions in

these tissues (Figure 2F). Evaluation of myeloid and stromal pop-

ulations by scRNA-seq frequently requires specialized protocols

for tissue dissociation and cell enrichment, increasing the risk for

altered gene expression profiles.25 To minimize these artifacts,

we performed single-cell analysis on suspensions obtained

with limited intervention. Although representing a small fraction

of total cells, plasmacytoid dendritic cells (IRF7, ITGAE,
446 Cancer Cell 42, 444–463, March 11, 2024
ITM2C, PLAC8, TCF4), macrophages (C1QA, IL1B, ITGAX),

cDC1 DCs (C1orf54, CADM1, CLNK), and follicular dendritic

cells (FDCs) (CR2, CXCL13, FDCSP) were profiled at varying fre-

quencies across normal and FL samples (Figures 2D–2F,

Table S2).

BCR signaling and ECM remodeling pathways are
upregulated in early relapsers
We performed gene set enrichment analysis of scRNA-seq

populations to identify the biological processes driving early



(legend on next page)
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progression and relapse in this initial set of FL patients.26 We

explored the gene expression patterns distinguishing B cells in

early relapsers from B cells in all other samples. The top path-

ways upregulated in early relapsers all involved BCR signaling

(Figure 2G). Several shared genes were identified as the lead-

ing-edge subset, defined as high-scoring genes accounting for

the enrichment signal.26 These included mRNAs encoding for

CD19, BLNK, SYK, and LYN (Table S2). We next compared the

B cells from early relapsers to the B cells from all other FL pa-

tients. As before, the B cells from early relapsers upregulated

components of BCR signaling pathways along with molecules

involved in cytokine signaling, immune activation, and immuno-

regulation (Figure 2H, Table S2). We additionally observed

enrichment of a gene set associatedwith glutamatergic signaling

including transporters (SLC38A1, SLC2A3, SLC38A2, SLC2A1)

and enzymes (GLUL, GLS) involved in glucose and glutamine

metabolism (Table S2).27 B cells of early relapsers exhibited

high expression of genes involved in extracellular matrix (ECM)

remodeling including those encoding growth factors, ADAMs,

annexins, and galectins (Figure 2H, Table S2).28

In addition to the unbiased approach described previously, we

evaluated gene signatures correlated with poor outcome in FL

patients8 as well as IRF4-associated molecular signatures dys-

regulated in other hematological malignancies29 (Figures 2I

and S2B–S2D). B cells from the early relapsers had elevated

levels of transcripts from genes correlated with a high risk of pro-

gression (Figure S2B).8 However, considerable interpatient

heterogeneity was observed in the expression of individual

genes summarized by the Huet module (Figure 2I). Within the

IRF4-associated module, the early relapsers uniformly showed

increased expression of FOXP1 (adjusted p value <0.0001, log

fold change = 1.07) (Figure S2C). This transcription factor has

been shown to predict adverse failure-free survival in FL patients

treated with rituximab and chemotherapy.30 Of the three early re-

lapsers, FL-4 and FL-7 displayed the highest aggregate expres-

sion of IRF4-associated genes (Figure S2D).

We next examined Ig clonotypes in our study using directed

amplification and sequencing of BCRs. Retention of surface Ig

expression is critical for malignant cells as it provides a mecha-

nism of antigen recognition and survival signaling in the TME.

While �40%–50% of FL B cells are reported to undergo isotype

switching to IgG, IgM is frequently observed in early stages of FL

and thought to favor GC reentry.31 The majority of progressors

expressed IgM heavy chains except for FL-5, whose tumor cells

had class switched to IgG (Figure S2E). In summary, bulk and
Figure 2. Cellular composition and gene expression patterns of norma
(A) Genomic alteration landscape. Each line provides the detected mutations

frameshift mutation, pink box - fusions) patients annotated based on progressio

(B) Cell composition reconstruction from bulk RNA-seq data.

(C) BCR calling from RNA-seq. Bubble corresponds to a unique or group of sim

sponds to clonotype abundance. Bulk RNA-seq (bulk), scRNA-seq (scRNA) here

(D) UMAP plot of 36,212 single cells from all samples.

(E) Expression of selected markers used for cell annotation of scRNA-seq cluste

(F) scRNA-seq frequencies of indicated cell types from each patient.

(G) Gene set enrichment analysis of B cells from early relapsers (*) compared to all o

of the adjusted p value on the y axis. The pink box shows a cutoff of adjusted p v

represents a gene set, with top scoring gene sets labeled.

(H) Same as G but only comparing B cells from early relapsers to other FL samp

(I) Dynamic expression of individual genes associated with Huet gene signature.

448 Cancer Cell 42, 444–463, March 11, 2024
scRNA-seq revealed diverse cell-intrinsic factors governing sur-

vival and progression in FL patients.

Quantification of diverse cell types at single-cell and
spatial resolution using IBEX
To provide a spatial context for the cellular heterogeneity

observed across normal and FL LNs, we performed 40-plex

IBEX imaging on tissue samples from this initial cohort (Fig-

ure 3A). For accurate quantification of cell types in situ, individual

cells were segmented using several membrane markers and a

deep-learning-based approach (Figures S3A–S3D, Table S5,

STAR methods). Using this approach, 37 phenotype clusters

were identified, resulting in a single-cell proteomic dataset of

1.8 3 106 cells (Figure 3B, Table S2). Phenotype clusters were

annotated into cell types based on protein biomarker expres-

sion, visualized using the data dimensionality reduction method

uniform manifold approximation and projection (UMAP), and

named according to their dominant marker expression and,

whenever possible, relevant cell ontologies5,32 (Figure 3C).

IBEX imaging revealed a diversity of B and T cell populations

across FL samples (Figures 3A–3E, S4A, S4B, and Table S2).

Although myeloid and stromal cell populations were identified

using the segmentation approaches outlined here (Figures 3B

and 3C), these cell types pose significant challenges due to their

complex morphology.33,34 To overcome these challenges, we

developed a method for profiling myeloid and stromal cells

based on the creation of image masks that use pixel-level data

instead of discrete segmented cells (Figure S3D). Cell quantifica-

tion of myeloid and stromal lineages was performed using the

indicated markers and normalized across samples by area

imaged (Figures 3F–3I, Table S2). Using this approach, we eval-

uated the location and relative abundance of blood endothelial

cells, lymphatic endothelial cells, FDCs, and CD49a+ cytokine/

chemokine-producing fibroblastic reticular cells (FRCs) previ-

ously identified in FL LNs35 (Figures 3F–3I and S4C). Quantitative

imaging revealed these cell types to be far more abundant than

appreciated by methods employing routine tissue dissociation

approaches (Figures 3G–3I, Table S2). The resulting data under-

score the importance of studying complex cell types in intact

tissues.

Distinct histological patterns identified in high-risk FL
patients
Previous studies have linked clinical progression to the distribu-

tion of cell types inside and outside of B cell follicles.36,37 B cell
l and FL samples
and fusions (cyan - missense mutation, green - nonsense mutation, violet -

n status.

ilar CDR3 sequences from heavy immunoglobulin genes. Size of circle corre-

and throughout.

rs. Plasma cells (PCs), pDCs, exhausted (Ex), and cytotoxic (Cyt).

ther samples plotted as enrichment score on the x axis compared to the -log10

alue <0.05 calculated using mSigDB (described in STAR methods). Each point

les.

See also Figure S2, Tables S1–S3, and S4.
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follicles varied in number and size and were identified as

CD20+CD21+ structures (Figure S5A). Further analysis revealed

differences in the presence of CD8+ T cells, tingible body macro-

phages (CD11c+SPARC+, CD11c+CD68+), and FDCs (combina-

tions of CD21+CD23+CD35+) in the neoplastic follicles of FL

LNs (Figures 4A and 4B). In agreement with the literature,5,38

the secondary follicles of non-FL LNs were enriched for GC

(BCL6+Ki-67+) B cells, T follicular helper (Tfh: CD3+CD4+CD69+

PD-1+ICOS+), and tingible body macrophages (Figure 4B). The

early relapsers had several distinguishing patterns (Figure S5B)

including the expansion of desmin+ fibroblasts around and

within B cell follicles (Figure 4C). While less abundant than other

myeloid and stromal cells (Figure 4B), increased proportions of

DC-SIGN+ cell subtypes were found in the follicles of early

relapsers (Figure S5B), providing a potential pro-survival signal

for malignant B cells via engagement with glycosylated

BCRs.31,39,40 In contrast, DC-SIGN is traditionally found on

CD163+ macrophages in the medulla and subcapsular sinus

but absent from the secondary follicles of normal LNs (Figures

S5B and 4C). IRF4+ tumor B cells, previously implicated in

aggressive FL cases with poor overall survival,41 were identified

in direct contact with DC-SIGN+ cells, Tfh cells, and cells ex-

pressing vimentin, a recognized autoantigen in FL42 (Figure S5C).

These findings are concordant with previous data demonstrating

that IRF4 is upregulated in B cells following BCR engagement

and/or T cell co-stimulation.43 The histological patterns identi-

fied in all three early relapsers—desmin+ FRC expansion around

B cell follicles and DC-SIGN+ cells within follicles—were begin-

ning to emerge in a non-progressor (FL-2) before therapy (Fig-

ure 4C). Interestingly, our scRNA-seq analyses revealed higher

expression of the Huet gene module in this patient than in other

early progressors (Figures 2I and S2B). In summary, IBEX re-

vealed changes to the myeloid and stromal components of the

TME with diagnostic and predictive potential.

LN cellular composition is dramatically altered in
malignancy
We evaluated the cellular ecosystems present in IBEX images

using a graph neural network-encoding approach and

K-Means clustering to identify individual neighborhoods encom-

passing similar cell types and distributions.44 Cell-cell interac-

tions were visualized on a schematic interaction graph that

included 8 cell types identified by object-based segmentation,

13 stromal masks, and 5 myeloid masks using the indicated

markers (Figures 5A and 5B). Selected cell types covered major

lineages identified by IBEX and scRNA-seq analysis. The result-
Figure 3. Spatial survey of complex tissues using IBEX
(A) Representative IBEX images of selectedmarkers, scale bar 30 mm. Vimentin (Vi

plots for the same region. IBEX images of myeloid (Row 4) or stromal (Row 5) mark

tessellation masks of populations (right).

(B) Heatmap of normalized mean marker expression used to define cell populati

(C) UMAP plot of 0.9 3 106 cells from all samples, colored by cell populations id

(D–E) Quantification of B cell (D) or T cell (E) subpopulations obtained from IBEX

(F) Heatmap of the normalized mean marker expression of biomarkers for myelo

(G) Quantification of myeloid subpopulations obtained from IBEX where cells are

(H) Heatmap of the normalized mean marker expression of biomarkers for strom

(I) Quantification of stromal subpopulations obtained from IBEX where cells ar

Tables S2, and S5.
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ing approach yielded 15 neighborhoods named for the dominant

cell type within each community: (Figures 5A, 5B, and Table S2).

Our workflow classified the well-defined anatomical structures

of non-FL LNs into discrete communities, e.g., GC (B1) and

mantle zone (B2) (Figure 5C, Table S2). In contrast, FL LNs

lacked the hallmark structures of normal LNs (Figures 5D, 5E,

S5D, and S5E). B cell-enriched clusters (B1-B2) were predomi-

nantly located inside the follicles of non-FL LNs (Figures 5F,

S5D, and S5E). All other B cell-enriched clusters were distributed

both within and outside of the follicles (B3-B5) with B3 and B4

largely absent from non-FL LNs and expanded in certain pro-

gressors (Figures 5E, S5D, and S5E). The majority of T cell-

enriched communities were located in the intrafollicular cortex

and/or paracortex (T2-T6); however, one community (T1)

was found inside the follicles of FL and non-FL LNs alike

(Figures S5D–S5E). The remaining communities were myeloid

(M1-M2) and stromal (S1-S2)-enriched clusters corresponding

to anatomical structures such as medullary and paracortical si-

nuses (Figures 5E, 5F, and Table S2). The community composi-

tion of secondary and neoplastic follicles was heterogeneous

across non-FL and FL samples, respectively (Figure 5G). How-

ever, individual follicles were more similar within samples than

between samples (Figures 5G and 5H). Thus, advanced image

analysis identified cellular communities present in normal LNs

that are altered in malignancy.

Spatial patterns are preserved across imaging
modalities
We extended our studies to larger tissue sections using key

markers of interest. Multiplexed imaging panels, designed based

on IBEX data, were applied to serial sections from FFPE samples

(Table S6). Following image acquisition, the conservation of his-

topathological patterns between IBEX small region of interests

(ROIs) and MxIF large ROIs was evaluated (Table S2). Samples

identified to have abundant populations of follicular CD8+

T cells and DC-SIGN+ FDCs by IBEX imaging were confirmed

to have these unique cell types by MxIF (Figure 6A). The pres-

ence of desmin+ stromal cells around the follicles of early re-

lapsers and a non-progressor was additionally confirmed in

FFPE tissue sections with different antibody clones (Figure 6B).

We next investigatedwhether follicle shape and size could deter-

mine whether the ROI selected for IBEX imaging captured the

larger FL sample (Figure S6A). For quantitative assessment be-

tween samples, follicle masks were obtained through manual

annotation by pathologists using CD20 and CD21 signals (Fig-

ure S5A). Using an agglomerative clustering approach, follicles
m), Desmin (Des), Collagen IV (Coll IV). Row 3: Cell segmentation and cell typing

ers (left), segments andmasks of immunofluorescence (IF) signal (middle), and

ons. 37 clusters were identified using cell segmentation.

entified by IBEX. Quantification of B.

and normalized by area imaged per sample.

id cell phenotyping by tessellation masks.

expressed as tessellation square counts per sample.

al cell phenotyping by tessellation masks.

e expressed as tessellation square counts per sample. See Figures S3, S4,
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were subdivided into 7 subtypes and their distribution was

compared between IBEX and MxIF images (Figures 6C and

6D). In general, IBEX and MxIF images derived from the same

donor had follicles of similar shape and size (Figure 6E).

Having observed concordance between the follicular compo-

sition of small IBEX ROIs and larger FFPE ROIs (Figure 6E), we

evaluated the community composition of these tissues using a

similar approach to the one outlined in Figure 5 (Figures S6B

and S6C). Cellular communities were defined based on 11 com-

mon markers corresponding to major cell lineages and key

anatomical structures. As a result, 13 community clusters were

obtained using both IBEX and MxIF data (Figures 6F and 6G).

Our community-level analysis provided a qualitative and quanti-

tativemeans for assessing similarities across samples and imag-

ingmodalities (Figures 6H and 6I). Both IBEX andMxIF images of

two early relapsers (FL-6, FL-7) exhibited reduced T cell-en-

riched communities (T1, T2) and increased proportions of B cells

in contact with CD4+ T cells (B1) (Figure 6H). To provide a metric

for estimating the area of tissue to image for accurate sampling,

we evaluated the mean tessellation correlation based on

different sized ROIs (Figures 6J and S6D). The obtained correla-

tions were greater than 0.8, suggesting that IBEX ROIs are fairly

representative of whole tissue sections.

Myeloid and stromal cell undersampling revealed by
data integration
To create a reference atlas based on data collected from sam-

ples derived from this initial cohort, we followed several paths

to capitalize on the strengths of each technology while over-

coming platform-specific limitations. We compared the relative

abundance of major cell populations identified by bulk RNA-seq

through cell deconvolution, scRNA-seq cell typing, and IBEX im-

age analysis using cell segmentation and masks (Figure 7A). In

general, similar proportions of major lymphocyte populations

were observed across technologies (Figure 7A). However,

myeloid and stromal cell populations were significantly under-

represented in RNA-seq datasets generated without specialized

tissue dissociation methods or cell enrichment (Figure 7A,

Table S7). On average, IBEX images had 36 times more cells

than paired scRNA-seq datasets (Table S2), empowering the

study of rare cells that may require analysis of tens of thousands

of cells via scRNA-seq (Figure 7B).

As cytokines and chemokines are essential for normal tissue

organization and malignancy-induced remodeling,45 we next

evaluated correlations between gene signatures curated from

bulk RNA-seq with cellular communities derived from IBEX

images (Figures 7C, 7D, Tables S8, S7A, and S7B). Given

gene- and protein-level evidence for ECM remodeling among

early relapsers (Figures 2H and 4C), we explored gene signa-

tures associated with fibrosis, including matrix metalloprotei-

nases, collagen deposition, and (myo)fibroblasts (Figures 7C

and S7A). The T2 community, rich in FRCs expressing CD49a

(ITGA5) and desmin (Des) (Figure S7A), was primarily found in
Figure 4. Cellular composition and histological patterns of secondary

(A) IBEX images depicting differences in the shape and cellular composition of B

insets). Tingible body macrophages (TGB, arrowheads).

(B) Quantification of major B, T, myeloid, and stromal cells found within B cell fo

(C) IBEX images depicting histological patterns shared among early relapsers. Sca
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the paracortex of non-FL LNs and the follicles of two early re-

lapsers. The T1 community was correlated with gene signatures

associated with B cell antibody production, Th2 immunity, and

T cell exhaustion (Figures 7C, 7D, and Table S8).

Bulk RNA-seq identified cytokines strongly correlated with

IBEX communities, including the major pro-fibrotic factor

TGF-b and its isoforms (Figures S7A and S7B).46,47 Several che-

mokines (CCL4, CCL5, CXCL13) involved in the recruitment of

diverse cell types to the TME were also found (Table S8). Our

scRNA-seq analysis revealed elevated CCL4 and the CXCL13-

CXCR5 gene pair in FL B cells from two early relapsers (FL-4,

FL-7) (Figures 7E–7G). LAG3+ CD8+ T cells, present only in

rLN1 and FL LNs (Figure 2F), showed elevated levels of CCL4-

CCR5, CCL5-CCR5, and CXCL13-CXCR5 gene pairs (Figures

7E–7G). Increased numbers of CD8+ T cells infiltrated the folli-

cles of two early relapsers (FL-4, FL-7, Figures 4A, 4B, and

6A), suggesting a potential mechanism involving tumor B cell

recruitment of CD8+ T cells through the secretion of CCL4 and

other soluble factors. We used IBEX imaging to confirm the pres-

ence of CXCL13+ FL B cells48 and expansion of CXCL13+ FDCs

and CD49a+ FRCs in FL patients35 (Figure 7H). Lastly, dense net-

works of lumican+ fibers were found around the follicles of early

relapsers (Figures 7I and S7C).

High-risk patients are distinguished by architectural
changes and enhanced stromal remodeling
To examine whether our spatial findings could be extended to a

larger patient cohort, we performed whole slide imaging of FFPE

specimens using the Cell DIVE-IBEX method (Figures 1E, S1,

Table S1, Figures 8, and S8). Due to technical constraints related

to antibody panel design,49,50 an 11-plex immune panel and

6-plex stromal panel were applied to serial sections (Tables

S2, S6, Figure S8C–S8E). We extended our quantitative follicle

analysis from 1,041 follicles (Figures 6 and S6) to 4,681 follicles,

revealing 5 clusters defined by 6 parameters related to the size,

shape, and distribution of follicles (Figures 8A–8D, S8A, and

S8B). Follicles were quantified in all samples except for FL-13

which had no discernable follicles (Figure S8A). In general,

non-progressors and early progressors exhibited a more back-

to-back distribution of follicles characterized by a reduction in

the minimum distance between neighboring follicles. Although

a morphological continuum was observed, neoplastic follicles

in early relapsers tended to be smaller, irregularly shaped, and

separated by greater distances, e.g., follicle type 4 (Figure 8D).

One progressor, FL-5, relapsed at 30 months and therefore did

not meet the clinical criteria of an early relapser (<24 months).

However, differences in follicle composition were observed

when FL-5 was analyzed with samples from patients experi-

encing early relapse versus progressors who did not relapse

(Figure 8D). It is worth emphasizing that these histological pat-

terns were present at the time of biopsy an average of 20months

before first progression and first relapse in an untreated patient

cohort (Figures 8E and S1).
and neoplastic follicles

cell follicles from FL patients, scale bars 200 mm or 50 mm (blue and magenta

llicles, obtained from IBEX and normalized by area imaged per sample.

le bar is 100 mm, 50 mm (Inset 1), and 25 mm (Insets 2 and 3). See also Figure S5.



(legend on next page)

ll
Article

Cancer Cell 42, 444–463, March 11, 2024 453



ll
Article
In addition to quantifying architectural changes in the FL TME,

we applied the tessellation community workflows described

earlier to Cell DIVE-IBEX images (Figures 8F–8M, Table S2).

The B1 community, comprised of tumor B cells and FDC net-

works, was found in all FL samples but progressively declined

in progressors and early relapsers (Figure S8F). As before, we

observed DC-SIGN+ FDC networks in a subset of FL patients

and this was captured by the B2 community consisting of tumor

B cells in well-defined follicles with FDC networks (Figure S8G).

Importantly, not all FDC networks in a single tissue section were

DC-SIGN+ (Figure S8C) and this heterogeneity, coupled with the

large area imaged, likely contributes to the low frequency of this

community. Contacts between CD68+ macrophages and tumor

B cells were captured by the M1 and M2 communities with a

slight increase in the DC-SIGN+ macrophage community (M1)

in the early relapsers (Figures 8H and 8I). The community with

the highest expression of IRF4+ tumor B cells, T2, varied among

FL patients but was elevated in FL-6 and FL-7, two early re-

lapsers that were shared between the discovery and validation

cohorts (Figure S8H). The appearance of a community negative

for all markers (S1) (Figure S8D) prompted investigation into the

stromal composition of the FL TME. We validated a loss of B cell

communities withminimal stromal involvement (B1), and a corre-

sponding increase in cellular communities comprised of B cells,

fibroblasts, and ECM (S3) distributed across whole tissue sec-

tions (Figures 8K–8M).

Regardless of the clinical group, considerable heterogeneity

was observed in the cellular composition of each sample. This

phenomenon effectively masked the significance of individual

communities and failed to identify key cell types defined by

the immune and stromal panels (Figures S8I, S8J, and

Table S2). To identify major drivers of early relapse, we con-

structed a linear model using every combination of the 16 com-

munities (Figures 8N–8P, STAR methods). The most significant

model to distinguish early relapsers from other FL patients

included three stromal communities (S1, S4, and S3) enriched

for desmin+vimentin+ fibroblasts and ECM-associated proteins

including lumican and secreted protein acidic and rich in

cysteine (SPARC), a protein expressed bymacrophages, endo-

thelial cells, and stromal cells involved in cell-matrix interac-

tions.51 Immune communities enriched for macrophages,

including DC-SIGN+ subsets, were the next most abundant

communities present in significant models (Figure 8O). Howev-

er, S1 and S4 communities were key drivers in identifying early

relapsers as these patients were either high for the S1 or S4

communities (Figure 8P), raising the possibility of two distinct

mechanisms of relapse in these patients. Potential mecha-
Figure 5. Cellular communities are shared across normal LNs but dist

(A) Proximity community cluster analysis to identify cell-cell interactions using ce

(B) Left: heatmap showing the relative content of cell types identified in each proxi

stromal masks in proximity radius of specified cell community. Each community (o

for cell types from the right heatmap. (C, D) IBEX images depicting follicles in no

(C) non-FL LN with corresponding community plots pseudo-colored as indicated

(D) FL LN with corresponding community plots pseudo-colored as indicated, sca

(E) Bar plots showing most abundant proximity communities identified by IBEX f

(F) Proportion of proximity communities identified by IBEX in the B cell follicles, r

(G) Distribution of B cell follicle communities across all normal and FL samples ba

from indicated sample, rLN1 (n = 13 follicles).

(H) Community plots from indicated patients. Insets show enlarged images of B
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nisms to investigate further include, but are not limited to, the

fibroproliferative potential of FRCs and their contribution to

ECM organization and therapy resistance.

DISCUSSION

Ambitious efforts by international consortia have highlighted

the importance of tissue atlases for discovery efforts and

translational research.1–4,52 Accordingly, the multimodal

approach we describe here yielded several insights and tech-

nical advances. One key finding is the identification of several

distinguishing features in the TMEs of high-risk FL patients.

The malignant B cells of early relapsers exhibited several

characteristics consistent with antigen engagement within

the TME. The histological patterns we identified in the discov-

ery cohort were confirmed in additional clinically relevant

FFPE samples using targeted imaging of key immune and

stromal markers. There was a reduction in follicle size and

an increase in the distance between neighboring follicles at

the time of biopsy, an average of 20 months before relapse.

Based on the community analysis performed in parallel, we

hypothesize that these architectural changes are due to a

loss of FDC networks and progressive expansion of stromal

cells within and around the follicles of high-risk FL patients.

Together, this work suggests that antibodies directed against

desmin, vimentin, and lumican may warrant inclusion in estab-

lished diagnostic panels for risk-adapted management of FL

patients. To this end, immunohistochemical evaluation of in-

tratumoral vimentin was identified to predict histologic trans-

formation in FL patients,53 and a scRNA-seq study demon-

strated the upregulation of transcripts involved in ECM

remodeling in FL stromal cells.54

Bulk RNA-seq has provided insight into themutational burden,

copy number alterations, and cellular composition of various tu-

mors.4 The cost-effectiveness of bulk RNA-seq, in combination

with previously reported mutations and disease-associated

gene expression signatures, makes this an attractive approach

for stratifying patients for personalized treatment options.

Here, we extend the utility of bulk analysis by correlating gene

signatures associated with cell types and states to cellular com-

munities found in situ. Despite these advances, our results

demonstrate that bulk RNA-seq does not allow for molecular

dissection of rare subpopulations of cells.4,55

Our scRNA-seq studies revealed 20 cell types with dominant

B cell clones emerging in clinical cases associated with early

progression and relapse after therapy. Others have speculated

on the critical role for antigen selection in the clonal evolution
inct in tumors

ll segments and masks (myeloid and stromal cells).

mity community cluster. Right: heatmap showing the proportion of myeloid and

ne single row) contains both segmented cells from the left heatmap andmasks

n-FL (C) and FL (LN).

, scale bar 100 mm.

le bar 100 mm.

or the whole imaged section.

eflective of whole tissue section.

sed on principal component analysis (PCA). Each symbol represents a follicle

cell follicle communities. See also Figure S5 and Table S2.
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of FL B cells.56 Given previous studies demonstrating sponta-

neous apoptosis of isolated FL cells in vitro, along with the iden-

tification of self-reactive tumor cells in FL patients,42,57 a

compelling argument can be made for TME-derived autoanti-

gens driving positive selection of malignant clones. In agreement

with other scRNA-seq studies, we observed increased propor-

tions of Tfh cells and T cells expressing markers associated

with immune dysfunction and/or exhaustion in FL LNs.58–61 We

also found CD8+ T cells expressing molecules related to cyto-

toxic T cell function such as PRF1, GZMA, and NKG7.62,63 The

co-expression of markers associated with cytolytic activity and

immune inhibition suggests the presence of an anti-FL response

that might be re-invigorated for therapeutic purposes. Although

initial efforts using T cell-directed cell therapies have shown

great promise, mechanisms of immune evasion and resistance

are incompletely understood64 but appear dependent on MHC

II expression in the FL TME.60

In contrast to previous studies profiling <50,000 cells from

dissociated tissues,58,59 we analyzed 1.8 x 106 cells at single-

cell and spatial resolution. IBEX spatially resolved myeloid,

stromal, and rare (<0.05%) cells that were completely absent

or significantly undercounted in RNA-seq datasets. We evalu-

ated changes to the stromal and myeloid components of the

FL TME including loss of FDC meshworks, reduction in tingible

body macrophages, and expansion of CD49a+ lymphoid

stromal cells.7,35,37,65 The ability to phenotype diverse cell pop-

ulations across spatial scales—whole tissue sections, major

anatomical structures, and proximity communities—presents

an opportunity to resolve the confusing literature concerning

cellular distribution patterns and clinical outcome in FL.37,65,66

To this end, we validated unique spatial patterns, such as

DC-SIGN+ FDCs and expansion of FRCs, using orthogonal

methods and alternative antibody clones. As an additional

resource, we devised analytical approaches to compare

morphological features shared between IBEX and MxIF images

prepared from the same patient. Here, the shape, size, and dis-

tance between B cell follicles yielded a unique structural finger-

print for assessing the similarities between small and large ROIs

and additionally offered insights into follicular growth patterns

associated with relapse.

A challenge for tumor atlas efforts is to go beyond a detailed

description of tissues to a greater understanding of how genetic

alterations and spatial patterns contribute to pathogenesis,

clonal evolution, and treatment response. Using scRNA-seq,

B cells from early relapsers were distinguished for their signifi-
Figure 6. Comparison of spatial patterns and cellular communities bet

(A) Comparison of IBEX and MxIF images for indicated patients. Scale bar (Left,

(B) Confocal images from MxIF samples. Scale bar 200 mm.

(C) Heatmap showing follicle types for all samples.

(D) Follicle composition in representative IBEX andMxIF images, CD21 (cyan), sca

(E) Follicle composition of IBEX and MxIF imaged samples. Each bar is a represe

(F) Heatmap of mean mask percentages per tessellation square of markers used

(G) IBEX andMxIF images with corresponding tessellation masks showing commu

shown in adjacent plots (left).

(H) Tessellation community plots showing correspondence between IBEX and M

dividual sample.

(I) Tessellation community maps from one representative FL sample.

(J) Percent similarity of IBEX andMxIF community composition depending on the

interest. See also Figure S6, Tables S2, and S6.

456 Cancer Cell 42, 444–463, March 11, 2024
cant upregulation of pathways involved in BCR signaling, cyto-

kine signaling, and immune activation. Several orthogonal

imaging approaches demonstrated FL B cells in contact with

DC-SIGN+ and vimentin+ cells in the TMEs of these patients,

providing a potential means of continual BCR engagement

through endogenous lectins and/or autoantigens, respec-

tively.7,39,42,43 FL B cells are known to engage in a bidirectional

crosstalk with lymphoid stromal cells, including cytokine/che-

mokine-producing fibroblasts.35,54 We hypothesize that these

interactions, coupled with matrisome-associated factors pro-

duced by FL B cells, results in the expansion and fibrogenic

potential of desmin+vimentin+ fibroblasts in the TMEs of early re-

lapsers. Bulk RNA-seq and IBEX community analysis confirmed

the expression of fibroblast and cytokine genes, e.g., TGF-b,

known to impact ECM deposition and functional remodeling of

LN tissues. As with other cancers,34 stromal desmoplasia was

shown to be a distinctive feature in this study distinguishing early

relapsers from other FL patients based on the evaluation of FFPE

tissue sections from a larger cohort. Early relapsers were subdi-

vided into two groups, high in S1 or S4 stromal communities,

suggesting the possibility of distinct mechanisms of relapse to

investigate in future studies. Together, these findings strongly

encourage careful examination of anti-fibrotic agents, coupled

with therapies that blunt BCR signaling or inhibit DC-SIGN-medi-

ated engagement, for the treatment of FL patients.

In summary, we present a comprehensive molecular and

spatial atlas of normal and malignant LNs taken from untreated

FL patients in the context of a prospective clinical trial. The

extension of our quantitative imaging studies to a greater num-

ber of samples with divergent clinical outcomes highlighted the

value of this approach by identifying histological patterns of early

disease progression and treatment resistance.Most importantly,

this work provides a unique opportunity to profile the TMEs of FL

patients prior to therapeutic intervention. Despite the urgent clin-

ical need, there are several impediments to the careful examina-

tion of relapsed FL including its broad clinical and genetic het-

erogeneity and challenges with recruiting sufficient numbers of

patients with adequate tissue biopsies for large studies.67 There-

fore, this work may inform the selection of novel therapeutic ap-

proaches for early relapsers, the highest priority in FL clinical

trials.68

Limitations of the study
The primary limitation of this study is the evaluation of single

biopsies collected from different sites of the human body.
ween IBEX and MxIF images

CD21 panels 50 mm; Right, CD8 panels 100 mm).

le bar 1 mm. Bottom row: Follicles color-coded based on types described in C.

ntative tissue section analyzed from an individual sample.

to detect tessellation community clusters.

nity clusters (25 mm). White lines (right) indicate borders of community clusters

xIF images. Each bar is a representative tissue section analyzed from an in-

area of tissue imaged and analyzed. Dots indicate the size of the IBEX region of
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While challenging to implement, the intra-tumor heterogeneity

observed among FL patients provides significant rationale for

multi-site profiling.59,69 An additional constraint is the lack of

paired bulk RNA-seq and MxIF datasets from non-FL LNs

due to technical challenges with performing paired analyses

from these small LNs. As we did not employ dissociation or

enrichment protocols for single-cell analysis of myeloid and

stromal cells, these populations are significantly underrepre-

sented in our single-cell datasets as compared to other studies

that explicitly examined these populations.35,54,70 Antibody

panel design is a time- and resource-intensive process.49,50

Due to the lack of suitable reagents, we were limited in the tar-

gets examined in our larger cohort. The absence of age, sex,

and race and ethnicity-matched clinical groups limits the

study’s generalization.
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Antibodies

CD20 (clone L26) Ventana Medical Systems Cat# 760–2531; RRID: AB_2335956

CD10 (clone SP67) Ventana Medical Systems Cat# 790–4506; RRID: AB_2336021

CD3 (clone 2GV6) Ventana Medical Systems Cat# 790–4341; RRID: AB_2335978

BCL2 (clone SP66) Ventana Medical Systems Cat# 790–4604; RRID: N/A

BCL6 (clone EP278) Cell Marque Cat# 227R-28; RRID: N/A

Ki-67 (clone MIB-1) Agilent Cat# M7240; RRID: AB_2142367

CD21 (clone EP3093) Ventana Medical Systems Cat# 760–4438; RRID: N/A

CD23 (clone IB12) Leica Biosystems Cat# NCL-CD23-1B12; RRID: AB_442058

IgD (clone 92) Agilent Cat# A0093; RRID: N/A

CD20 AF488 (clone L26) Thermo Fisher Scientific Cat# 53-0202-82; RRID: AB_10734358

CD20 eF660 (clone L26) Thermo Fisher Scientific Cat# 50-0202-82; RRID: AB_11150959

SPARC AF532 (goat polyclonal,

custom conjugate from company)

R&D Systems Cat# N/A; RRID: AB_ 2892754

CD10 PE (clone FR4D11) Caprico Biotechnologies Cat# 103926; RRID: N/A

CD10 PE (clone HI10a) BioLegend Cat# 312204; RRID: AB_314915

CD3 AF594 (clone UCHT1) BioLegend Cat# 300446; RRID: AB_2563236

BCL2 AF647(clone 100) BioLegend Cat# 658705; RRID: AB_2563279

Collagen IV (rabbit polyclonal) Abcam Cat# Ab6586; RRID: AB_305584

Goat anti-rabbit IgG AF700 Thermo Fisher Scientific Cat# A21038; RRID: AB_2535709

IgD AF488 (clone IA6-2) BioLegend Cat# 348216; RRID: AB_11150595

CD21 AF532 (clone Bu32), custom

conjugate from company

BioLegend Cat# N/A; RRID: AB_2892739

CD138 PE (clone MI15) BioLegend Cat# 356504; RRID: AB_2561878

BCL6 AF647 (clone K112-91) BD Biosciences Cat# 561525; RRID: AB_10898007

CD31 AF700 (clone WM59) BioLegend Cat# 303133; RRID: AB_2566326

HLA-DR AF488 (clone L243) BioLegend Cat# 307620; RRID: AB_493175

CD23 AF532 (clone EBVCS-5), custom

conjugate from company

BioLegend Cat# N/A; RRID: AB_2892740

CD1c PE (clone L161) BioLegend Cat# 331506; RRID: AB_1088999

CD163 AF647 (clone GH1/61) BioLegend Cat# 333620; RRID: AB_2563475

CD11c AF700 (clone B-Ly6) BD Biosciences Cat# 561352; RRID: AB_10612006

CD8 AF488 (clone SK1) BioLegend Cat# 344716; RRID: AB_10549301

CD4 AF532 (clone RPA-T4) Thermo Fisher Scientific Cat# 58-0049-42; RRID: AB_2802361

FOXP3 eF570 (clone 236A/E7) Thermo Fisher Scientific Cat# 41-4777-82; RRID: AB_2573609

CD25 AF647 (clone M-A251) BioLegend Cat# 356128; RRID: AB_2563588

Ki-67 AF700 (clone B56) BD Biosciences Cat# 561277; RRID: AB_10611571

ICOS AF488 (clone CS98.4A) BioLegend Cat# 313514; RRID: AB_2122584

SPARC AF532 (goat polyclonal, custom

conjugate from company based on Cat#AF941)

R&D Systems Cat# N/A; RRID: AB_2892754

PD-1 PE (clone EH12.2H7) BioLegend Cat# 329906; RRID: AB_940483

CD69 AF647 (clone FN50) BioLegend Cat# 310918; RRID: AB_528871

CD39 FITC (clone A1) BioLegend Cat# 328206; RRID: AB_940425

LYVE-1 AF532 (goat polyclonal, custom

conjugate from company)

R&D Systems Cat# AF2089; RRID: AB_2892756
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CD35 PE (clone E11) BioLegend Cat# 333406; RRID: AB_2292231

CD68 AF647 (clone KP1) Santa Cruz Biotechnology Cat# sc-20060; RRID: AB_3073741

a-SMA AF488 (clone 1A4) Thermo Fisher Scientific Cat# 53-9760-82; RRID: AB_2574461

a-SMA eF660 (clone 1A4) Thermo Fisher Scientific Cat# 50-9760-82; RRID: AB_2574362

Lumican AF532 (goat polyclonal, custom

conjugate from company)

R&D Systems Cat# AF2846; RRID: AB_2892757

IRF4 PE (clone IRF4.3E4) BioLegend Cat# 646404; RRID: AB_2563005

DC-SIGN AF647 (clone 9E9A8) BioLegend Cat# 330112; RRID: AB_1186092

Desmin AF488 (clone Y66) Abcam Cat# Ab185033; RRID: AB_2892748

CD49a AF647 (clone TS2/7) BioLegend Cat# 328304; RRID: AB_1236407

CD94 AF488 (clone DX22) BioLegend Cat# 305506; RRID: AB_314536

Vimentin AF532 (clone O91D3) custom

conjugate from company

BioLegend Cat# NA; RRID: AB_2892753

CD45 PE/iFluor594 (clone F10-89-4) Caprico Biotechnologies Cat# 1016185; RRID: 2892742

CD44 AF647 (clone IM7) BioLegend Cat# 103018; RRID: AB_493681

BCL2 (clone SP66) Abcam Cat# Ab236221; RRID: N/A

Donkey anti-rabbit IgG AF594 Thermo Fisher Scientific Cat# A-21207; RRID: AB_141637

CD10 (polyclonal) R&D Systems Cat# AF1182; RRID: AB_354652

Donkey anti-goat IgG AF680 Thermo Fisher Scientific Cat# A-21084; RRID: AB_141494

CD21 (clone SP186) Abcam Cat# Ab240987; RRID: N/A

Donkey anti-rabbit IgG AF555 Thermo Fisher Scientific Cat# A-31572; RRID: AB_162543

CD68 iFluor594 (clone KP1) Caprico Biotechnologies Cat# 1064135; RRID: 2892745

DC-SIGN (clone h209) LSBio Cat# LS-B3782; RRID: AB_10689801

Donkey anti-rat IgG AF647 Jackson ImmunoResearch Cat# 712-605-153; RRID: AB_2340694

SPARC (polyclonal) R&D Systems Cat# AF941; RRID: AB_355728

HI-6B Multiplex Panel - Human CD3,

CD4, CD8, FoxP3

Cell IDx Cat# HI06B-005

CD3 (clone SP7) Abcam Cat# Ab16669; RRID: AB_443425

Goat anti-rabbit IgG AF532 Thermo Fisher Scientific Cat# A-11009; RRID: AB_2534076

PD-1 (polyclonal) Novus Biologicals Cat# AF1086; RRID: AB_354588

Donkey anti-goat IgG AF555 Thermo Fisher Scientific Cat# A-21432; RRID: AB_2535853

Hoechst Biotium Cat# 40046; RRID: N/A

IRF4 (clone MUM1p) Novus Biologicals NB200-356-0.25 mL; RRID: N/A

Goat anti-mouse IgG1 AF488 (polyclonal) Thermo Fisher Scientific Cat# A-21121; RRID: AB_2535764

Donkey anti-rabbit IgG AF647 (polyclonal) Thermo Fisher Scientific Cat# A-31573; RRID: AB_2536183

Donkey anti-Goat IgG DL755 (polyclonal) Thermo Fisher Scientific Cat# SA5-10091; RRID: AB_2556671

CD21 PE (clone SP186) Abcam Cat# ab306325; RRID: N/A

Donkey anti-rat IgG DL 755 (polyclonal) Thermo Fisher Scientific Cat# SA5-10031; RRID: AB_2556611

CD4 AF488 (clone EPR6855) Abcam Cat# ab196372; RRID: AB_2889191

CD3D AF555 (clone EP4426) Abcam Cat# ab208514; RRID: 2728789

CD8 AF647 (clone C8/144B) Biolegend Cat# 372906; RRID: AB_2650712

Ki-67 Biotin (polyclonal) Novus Biologicals Cat# NB500-170B; RRID: AB_1660247

Streptavidin AF750 Thermo Fisher Scientific Cat# S21384; RRID: N/A

Desmin AF488 (clone DES/1711) Novus Biologicals Cat# NBP2-54503AF488; RRID: N/A

Donkey anti-mouse IgG AF647 (polyclonal) Thermo Fisher Scientific Cat# A-31571; RRID: AB_162542

Lumican Biotin (polyclonal) R&D Systems Cat# BAF2846; RRID: AB_2139483

Streptavidin AF555 Thermo Fisher Scientific Cat# S21381; RRID: N/A

Vimentin BL750 (clone O91D3)

custom conjugate from company

BioLegend Cat# N/A; RRID: N/A
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Chemicals, peptides, and recombinant proteins

Trypan Blue Exclusion Thermo Fisher Scientific 15250061

Triton X-100 Sigma-Aldrich Cat# T8787

Tween 20 Millipore Sigma Cat# 9005-64-5

PBS, pH 7.4 GIBCO Cat# 10010-023

BD Cytofix/Cytoperm BD Biosciences Cat# 554722

Optimal cutting temperature (OCT) compound Sakura Cat# 4583

Sucrose Millipore Sigma Cat# S0389

Bovine Serum Albumin Millipore Sigma Cat# A1933

Human Fc-block BD Biosciences Cat# 564219

diH2O Quality Biological Cat# 351-029-101

Fluoromount-G Southern Biotech Cat# 0100-01

Hoechst 33342 Thermo Fisher Scientific Cat# H3570

Lithium borohydride (purchase in 1 g aliquots) STREM Chemicals Cat# 93-0397

Chrome Alum Gelatin Newcomer Supply Cat# 1033A

AR6 buffer 10X Akoya Biosciences Cat# AR600250ML

Bond� Epitope Retrieval 1-1L Leica Biosystems Cat# AR9961

Bond� Epitope Retrieval 2-1L Leica Biosystems Cat# AR9640

Wash Solution 10X Concentrate, 1L Leica Biosystems Cat# AR9590

Avidin/Biotin Blocking Buffer Abcam Cat# ab64212

Glycerol Sigma-Aldrich Cat# G5516-1L

Ethanol, 200 Proof Decon Labs, Inc. Cat# 2701

Formalin, 10% neutral buffered Cancer Diagnostics, Inc. Cat# FX1003

Xylene, histology grade Newcomer Supply Cat# 1446C

ImmEdge Pen Vector Laboratories Cat# H-4000

Normal Rabbit Serum Abcam Cat# Ab7487

Normal Goat Serum Abcam Cat# Ab138478

Critical commercial assays

Chromium Next GEM Single

Cell 50 Kit v2, 16 rxns

10X Genomics Cat# PN-1000263

Chromium Next GEM Chip K

Single Cell Kit, 48 rxns

10X Genomics Cat# PN-1000286

Chromium Single Cell Human BCR

Amplification Kit, 16 rxns

10X Genomics Cat# PN-1000253

Library Construction Kit, 16 rxns 10X Genomics Cat# PN-1000190

AllPrep kit Qiagen Cat# 80204

TruSeq Stranded mRNA Library kit Illumina Cat# 20020594

Deposited data

RNA-seq data This paper https://doi.org/10.5281/zenodo.6629388

Imaging data This paper Data deposited to the Image Data Resource

(https://idr.openmicroscopy.org) under

accession number idr0158.

ASCT+B Tables This paper https://doi.org/10.5281/zenodo.6629388

Software and algorithms

Leica Application Suite X (LAS X) Leica Microsystems RRID: SCR_013673

Imaris and Imaris File Converter

(x64, version 9.5.0)

Bitplane RRID: SCR_007370

Python (version 3.7.0 and higher) Python RRID: SCR_008394

SimpleITK Imaris Python Extension (Radtke et al., 2022) https://doi.org/10.5281/zenodo.4632320

BostonGene Software This paper https://github.com/BostonGene/Cell_Atlas_MxIF
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REAGENT or RESOURCE SOURCE IDENTIFIER

Fiji Open source project hosted

on GitHub

RRID: SCR_002285

R and RStudio R Core Team RRID: SCR_001905

GraphPad Prism, version 10.1.0 GraphPad Software RRID:SCR_002798

Adobe Photoshop CC 2020 Adobe

Adobe Illustrator CC 2020 Adobe

Other

2-well chambered coverglass Lab-Tek Cat#155380

Dissecting mat, flexible, polypropylene Newcomer Supply Cat#5218A

Dissecting needles Newcomer Supply Cat#5220PL

Histomolds, 15 mm 3 15 mm x 5mm Sakura Cat#4566

Sterile disposable scalpels #11 Newcomer Supply Cat#6802A

VWR Superfrost Plus micro slides VWR Cat#48311-703

EasyDip slide staining kit Newcomer Supply Cat#5300KIT

EasyDip anodized aluminum jar rack holder Newcomer Supply Cat#5300JRK

Wash N’Dry coverslip rack Electron Microscopy Sciences Cat#70366-16
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Andrea

Radtke (andrea.radtke@nih.gov).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d The dataset contains the processed scRNA-seq information from human LNs analyzed in this work as a Seurat object. The

scRNA-seq information was saved in the rds format for viewing and analysis using the R programming language (to load it

in R: scrna_seq_data <- readRDS("scRNA_seq_data_object.rds")). Microscopy data reported in this paper are deposited to

the Image Data Resource (https://idr.openmicroscopy.org) under accession number idr0158.

d All original code has been deposited at Zenodo or GitHub and is publicly available as of the date of publication. Accession links

are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

All patients were enrolled on a prospective clonal evolution study for adults with grade I-II or 3A FL who have not received systemic

therapy and are without evidence of histologic transformation [NCT03190928]. All patients consented to the trial. The primary

endpoint of the study is time to initiation of frontline systemic therapy. The primary objective is to analyze the molecular biology of

patients with progression within 2 years of study entry (‘early progressors’) compared to patients who do not progress and need ther-

apywithin 2 years of study entry (‘non-progressors’). The secondary objective is to characterize themolecular biology of patients who

relapse <2 years after frontline therapy (‘early relapsers’). Baseline staging procedures include computed tomography (CT) and fluo-

rodeoxyglucose (FDG)-positron emission tomography (PET) scans along with bone marrow biopsy with aspirate, and patients are

staged by the Lugano criteria.71 All patients are offered excisional LN biopsy, if feasible. Enrolled patients are assigned a baseline

FLIPI score72 and initially assessed by uniform protocol-defined treatment criteria to determine need for immediate frontline therapy.

For those who do not meet criteria for treatment, they are monitored with clinic visits every 4 months for 2 years, every 6 months in

years 3–5, and then annually until they meet criteria for treatment. CT scans are every 8 months for 2 years, then annually. FDG-PET

scans are repeated at 2 years and any time of suspected progression. Normal human mesenteric LNs were obtained from patients

undergoing elective risk-reducing gastrectomies or colon resections for colon adenocarcinoma at the National Cancer Institute (NCI)

based on an Institutional Review Board (IRB) approved tissue collection protocol (#13C-0076). Biopsies of these LNs were grossly

normal as determined by the operative surgeon and histopathologically normal as determined by an expert pathologist. Follicular

hyperplasia was identified in one sample (rLN1) based on standard diagnostic evaluation with hematoxylin and eosin (H&E). This
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patient sample was included to address inflammation-associated changes versus tumor-induced molecular and morphological

alterations in the LN.BCL2 rearrangements were identified using fluorescence in situ hybridization (FISH), the gold standard for trans-

location detection in lymphoma FFPE.73 Representative sections from all samples were evaluated using H&E staining before multi-

modal analysis.

Here, we highlight our ability to profile the TME of patients enrolled onto a prospective clinical trial prior to therapeutic intervention

using a multi-modal strategy. This approach required access to an exceedingly rare cohort as well as ample biopsy material. For

these reasons, we did not estimate sample size, but did analyze the influence (or association) of sex, age, and race and ethnicity

on study results from the larger validation cohort (Figures 8 and S8). We found no association between age but were unable to

examine an association between sex and ethnicity due to underpowered data. Samples were assigned to different groups

(Non-FL, Non-Progressor, Early Progressor, and Early Relapser) based on clinical criteria for inclusion and exclusion. Clinical group

assignments were withheld from the experimental biologists until the final processing of results to blind the study. Spatial biology

findings were confirmed using orthogonal methods and alternative imaging platforms. See Table S1 and Figure S1 for clinical and

demographic patient details.

METHOD DETAILS

Sample preparation from human tissues
The size of the LNs ranged from less than 1 cm (nLN1 to nLN4), 2 cm (rLN1), to 6 cm (FL1 to FL-28) in diameter. Unfixed LN were

measured (L xW x H), cut along the longitudinal axis, and macroscopically inspected. For routine assessment, the LN was sectioned

into slices <4 mm in thickness and prepared as FFPE samples as previously described.74 Depending on the size of the LN, samples

were additionally prepared as snap frozen tissue blocks (<5 mm3) and cell suspensions (at least 20% of total LN volume). All clinical

stains were performed with automated immunostainers, BenchMark Ultra (Roche) or BOND-Max (Leica Biosystems), according to

the manufacturers’ instructions. Diagnostic panels consisted of CD20 (clone L26), CD10 (clone SP67), CD3 (clone 2GV6), BCL2

(clone SP66), BCL6 (clone EP278), Ki-67 (clone MIB-1), CD21 (clone EP3093), CD23 (clone IB12), and IgD (clone 92). See key

resources table.

For bulk and scRNA-seq, cell suspensions were prepared by manual disruption of the tissues and frozen down viably. Following

tissue homogenization, cells were frozen and stored at �150�C in liquid nitrogen. Prior to sequencing, single cell suspensions were

thawed rapidly in a 37�C water bath until ice had just disappeared, then transferred to a 50 mL tube and washed with 50 mL of cold

(4�C) 1xPBS. Viable cells were enumerated manually using trypan blue exclusion. For IBEX imaging, human LNs (1 cm3 or smaller in

size) were fixed with BD CytoFix/CytoPerm (BD Biosciences) diluted in PBS (1:4) for 2 days. Following fixation, all tissues were

washed briefly (5 min per wash) in PBS and incubated in 30% sucrose for 2 days before embedding in OCT compound (Tissue-

Tek) as described previously.20,21 Non-FL LNs (nLN1, nLN2, rLN1) were only analyzed by scRNA-seq and IBEX imaging. Non-FL

LNs (nLN3 and nLN4) and FL samples (FL-1 to FL-28) were prepared as FFPE blocks and imaged using the Cell DIVE-IBEX method.

See Table S1 and Figure S1 for more details.

Whole exome sequencing (WES) analysis
Low quality reads were filtered using FilterByTile/BBMap v37.9075 and aligned to human reference genome GRCh38

(GRCh38.d1.vd1 assembly) using BWA v0.7.17.76 Duplicate reads were removed using Picard’s v2.6.0 MarkDuplicates (‘‘Picard

Toolkit’’, 2019. Broad Institute, GitHub Repository. http://broadinstitute.github.io/picard/; Broad Institute). Indels were realigned

by IndelRealigner and recalibrated by BaseRecalibrator and ApplyBQSR using tools taken fromGATK v3.8.1.77 Somatic single nucle-

otide variations (sSNVs), small insertions, and deletions were all detected using Strelka v2.9.78

Bulk RNA-seq processing and analyses
RNAwas isolated from cell suspensions using the AllPrep kit (Qiagen) and libraries were generated using the TruSeq StrandedmRNA

Library kit (Illumina). Paired end sequencing was performed on an Illumina NextSeq2000. RNA-seq reads were aligned using Kallisto

v0.42.4 to GENCODE v23 transcripts 69 with default parameters. The protein-coding transcripts, immunoglobulin heavy, kappa and

lambda light chains, and TCR-related transcripts were retained. Noncoding RNA, histone, andmitochondria-related transcripts were

removed, resulting in 20,062 protein coding genes. Gene expression was quantified as the sum of the transcripts and re-normalized

per million (TPM) and log2-transformed.79

Deconvolution of bulk RNA-seq
The Kassandramachine learning algorithmwas used to predict cell percentages frombulk RNA-seq.80 Themodel consisted of a two-

level hierarchical ensemble that used LightGBM as building blocks. The model was trained on artificial RNA-seqmixtures of different

cell types (T cells, B cells, NK, macrophages, cancer-associated fibroblasts, and endothelial cells) obtained frommultiple datasets of

sorted cells. All datasets were isolated frompoly-A or total RNA-seq profiled human tissueswith read lengths higher than 31 bp and at

least 4 million coding read counts. These datasets passed quality control by FASTQC with minimal contamination (<2%). The model

was trained to predict the percentage of RNA belonging to specific cell types. Predicted percentages of RNA were later converted
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into percentages of cells using the methodology described previously.81 For Figures 2, 7C, 7D, S7A, and S7B, gene signature scores

were calculated using the ssGSEA algorithm from the GSVA R package.82 Raw scores were medium scaled to (�2, 2) or to (�3, 3)

range. See Tables S2, S3, and S4.

scRNA-seq processing and analysis
Viable cells were diluted in 1xPBS such that when loaded on the 10x Genomics Chromium Controller they were at a capture

number of �6,000 cells. After capture, single cell RNA-seq/VDJ libraries were generated using the 10X Chromium Single Cell

50 gene expression/V(D)J kit and processed according to the manufacturer’s instructions. Sequencing of libraries was performed

on an Illumina NOVA-Seq and cycling was performed according to the manufacturer’s suggestions. All samples had captures per-

formed on the same day with reagents from the same kit. All were sequenced together on multiple sequencing runs to achieve

target depth.

FAST-Q files were processed through the 10X Cell Ranger Pipeline v5.0.1 with alignment to a GRCh38 reference (refdata-gex-

GRCh38-2020-A for gene expression reads and refdata-cellranger-vdj-GRCh38-alts-ensembl-5.0.0 for TCR and BCR enriched

reads). A classical scRNA-seq analysis pipeline was performed as described.83 The Cell Ranger 4.0 tool and Scanpy 1.9.3 package

with Python 3.8 were used.84 Cells with less than 1,000 unique molecular identifiers (UMIs), more than 10,000 UMIs, and cells with

more than 10% mitochondrial gene UMIs were removed. These criteria were empirically selected after initial data analysis in Cell

Ranger. These thresholds were applied to minimize several technical clusters (small number of UMIs, high mitochondrial gene

expression, and lack of meaningful marker genes). Selection of the top 3,000 over-dispersed genes was performed as described.85

Next, log-transformation of the data and linear regression of expression data against the number of UMIs and number of genes in

cells was performed followed by kNN graph construction. The Leiden algorithmwas used for cell clustering with the top 3,000marker

genes and not the whole transcriptome. Elbow plot analysis was used to determine how many PCs were needed to capture the ma-

jority of the variation in the data.86 Data were visualized with UMAP. After overall analysis of all datasets, we selected the subset of

T cells, B cells, and other cells and performed an analysis of each subset. Cell types were identified based on marker gene expres-

sion. Moreover, cells from the same cell type were selected based on the Leiden clusters and not the UMAP coordinates.

MIXCR v.2.1.787was used to analyze BCR sequences fromRNA-seq data. Single clonotypeswere grouped into cloneswith unique

VDJ combinations and identical CDR3 nucleotide sequences. B cell cloneswere further aggregated into clone groups if the VDJ com-

bination was the same and if the CDR3 nucleotide sequences differed no more than 1 nucleotide (Figure S2E).

Gene set enrichment analysis was performed using the C2CP gene set from the mSigDB.88 Analysis was performed in R v4.1.3

using fgsea v1.20.0.26 Analysis was performed on a ranked gene set resulting from the log fold change values fromdifferential expres-

sion analysis using the FindMarkers function in Seurat v4.1.0.89 Ribosomal genes were removed before analysis was performed.

Plots were generated in ggplot2 v3.3.5.90 Dot plots were generated using the DotPlot function in Seurat. Gene module scores for

individual cells were generated using the AddModule function in Seurat, with the number of control features set to the same length

as the gene set of interest. Gene modules were visualized using the VlnPlot function in Seurat. For Figures 2G and 2H, the B cell pop-

ulations included cycling B, tumor B, GC B, memory B, naive B, and FCRL4+ B single cell clusters.

High content imaging using IBEX
High content imaging was performed on fixed frozen sections as described previously.20,21 Briefly, 20 mm sections were cut on a

CM1950 cryostat (Leica) and adhered to 2 well Chambered Coverglasses (Lab-tek) coated with 15 mL of chrome alum gelatin

(Newcomer Supply) per well. Frozen sections were permeabilized, blocked, and stained in PBS containing 0.3% Triton X-100

(Sigma-Aldrich), 1% bovine serum albumin (Sigma-Aldrich), and 1% human Fc block (BD Biosciences). Immunolabeling was per-

formed with the PELCO BioWave Pro 36500-230 microwave equipped with a PELCO SteadyTemp Pro 50062 Thermoelectric Recir-

culating Chiller (Ted Pella) using a 2-1-2-1-2-1-2-1-2 program. A complete list of antibodies and an IBEX LN antibody panel can be

found in Table S6. Cell nuclei were visualized with Hoechst (Biotium) and sections were mounted using Fluoromount G (Southern

Biotech). Mounting media was thoroughly removed by washing with PBS after image acquisition and before chemical bleaching

of fluorophores. After each staining and imaging cycle, samples were treated for 15 min with 1 mg/mL of LiBH4 (STREM Chemicals)

prepared in diH2O to bleach all fluorophores except Hoechst and Alexa Fluor 594.

MxIF imaging of FFPE tissues
5 mm tissue sections were cut from FFPE samples and placed onto glass slides. Prior to immunolabeling, tissue sections were baked

in a 60�C oven for 1 h to adhere the tissues to the slides. Deparaffinization was performed with 2 exchanges of 100% xylene (10 min

per exchange) followed by 100% ethanol for 10 min, 95% ethanol for 10 min, 70% ethanol for 5 min, and 10% formalin for 15 min.

Antigen retrieval was performed by incubating slides in AR6 buffer (Akoya Biosciences) for 40 min in a 95�Cwater bath. After 40 min,

slides were removed from the water bath and allowed to cool on the bench for 20 min. Blocking and immunolabeling was performed

using the PELCO BioWave Pro 36500-230 microwave according to the steps outlined in Table S6. Prior to immunolabeling, tissue

sections were outlined with an ImmEdge pen to create a hydrophobic barrier (Vector laboratories) and then rehydrated with PBS.

Following a 30-min incubation in blocking buffer, tissue sections were incubated with primary antibodies, washed 3 times in PBS,

and then incubated with appropriate secondary antibodies. Directly conjugated primary antibodies were applied last after blocking

with 5%normal rabbit and/or goat sera (Abcam). Cell nuclei were visualizedwith Hoechst (Biotium) and sections weremounted using

Fluoromount G (Southern Biotech).
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IBEX and MxIF image acquisition and alignment
Representative sections from different tissues were acquired using an inverted Leica TCS SP8 X confocal microscope equipped with

20X (NA 0.75) and 40X objectives (NA 1.3), 4 HyD and 1 PMT detectors, a white light laser that produces a continuous spectral output

between 470 and 670 nm as well as 405, 685, and 730 nm lasers. Panels consisted of antibodies conjugated to the following fluoro-

phores anddyes: Hoechst, Alexa Fluor (AF)488, AF532, phycoerythrin (PE), PE/iFluor594, eF570, AF555, AF594, iFluor (iF)594, AF647,

eF660,AF680, andAF700.All imageswerecapturedat an8-bit depth,with a line averageof 3, and1024x1024 formatwith the following

pixel dimensions: x (0.284mm,40X), y (0.284mm,40X), x (0.568mm,20X), y (0.568mm,20X), and z (1mm). Imageswere tiled andmerged

using the LAS X Navigator software (LAS X 3.5.5.19976). For IBEX tissue imaging, multiple tissue sections were examined before se-

lecting a representative tissue section that contained several distinct follicles, often resulting in unusually shaped region of interests.

For multiplexed imaging of FFPE tissue sections, whole tissue sections were imaged using a 20X objective. To ensure proper align-

ment over distinct imaging cycles, careful attention was paid to the quality of image stitching achieved with the Leica software and

z-stacks were set by manual inspection of notable features such as unusually shaped nuclei throughout the tissue volume. These un-

usual featureswerematchedacross the z stackandovermultiple cycles of IBEXasoutlined in adetailedprotocol.21 Fluorophore emis-

sionwas collected on separate detectorswith sequential laser excitation of compatible fluorophores (3–4 per sequential) used tomini-

mize spectral spillover. The Channel Dye Separation module within the LAS X 3.5.5.19976 (Leica) was then used to correct for any

residual spillover. For publication quality images, Gaussian filters, brightness/contrast adjustments, and channel masks were applied

uniformly to all images. Image alignment of all IBEXpanelswasperformed asdescribed previously20,21 usingSimpleITK.91,92 Software

can be downloaded via a zip file from the Imaris extensions code repository (https://github.com/niaid/imaris_extensions/archive/refs/

heads/main.zip). Installation instructions are available online: [https://github.com/niaid/imaris_extensions] and in theREADME.mdfile

which is part of the zip file. Additional details can be found in the XTRegisterSameChannel SimpleITK Imaris Python Extension

YouTube tutorial (https://youtu.be/rrCajI8jroE). Please see sample data on Zenodo for usage of the software [https://doi.org/10.

5281/zenodo.4632320].

To obtain multiplexed images of FFPE tissue sections, serial sections were imaged with 4 distinct panels of antibodies containing

Hoechst and 2–8 antibodies per panel (Table S6). Following image acquisition, images were aligned using Hoechst as a fiducial. As a

first approximation, a pathologist manually obtained rotation matrices for cell-cell alignment across serial sections using down-

sampled Hoechst channels and GIMP (GNU Image Manipulation Program) image editor. Following image rotation for alignment,

the register_translation function from the skimage python package was used to find a translation vector. Upon identification of a suit-

able rotation matrix and translation vector based on Hoechst+ nuclei, these parameters were applied to all serial image stacks. The

register_translation function uses cross-correlation in Fourier space, optionally employing an upsampled matrix-multiplication DFT

(Discrete Fourier transform) to achieve arbitrary subpixel precision.93 Artifacts (such as fluorophore aggregates and uneven staining)

were manually masked by 3 pathologists.

Object-based segmentation of IBEX images
Object-based cellular segmentation was performed using a convolutional neural network (CNN)-based approach with Mask R-CNN

architecture and ResNet-50 as a backbone.94 As an input three channels were used: Hoechst for nuclei, CD45 as a base membrane,

and composite of several other membrane markers (CD138, CD163, CD94, CD69, CD8, CD4). Composite images were made by

choosing the brightest pixel across all marker channels for each separate pixel position. Final images were normalized to a range

of 0–1 by dividing by the maximal possible intensity value (255). The prediction window size was set to 256 pixels on each side.

To stitch prediction tiles, the original images were cropped into intersecting windows with 136 pixel steps. A 60 pixel buffer was

used on every side of prediction window (256 - 60 * 2) for predicted cell selection in overlapping areas. Buffer size was chosen as

a half of a maximum potentially possible cell side size. The training settings for the deep learning algorithms used in this work are

given in Table S5.

Cell typing of IBEX images
Among the 39 antibodies included in the multiplexed imaging panels, three distinct staining patterns were observed: membrane or

cytoplasmic (all markers except for BCL6, Ki-67, FOXP3, IRF4, CD68), nuclear (BCL6, Ki-67, FOXP3, IRF4), and endosomal/lyso-

somal (CD68). The CNNs were trained to recognize the presence or absence of a biomarker based on these patterns of expression

for individual cells. The input image consisted of three channels: Hoechst, marker of interest, and segment mask for a cell of interest.

Input images were cropped to 128x128 pixels, corresponding to the cell bounding box and its nearest environment, and normalized

to values ranging from 0 to 1, dividing by the maximal possible intensity value. All three networks had the same architecture (ResNet-

50) with two neurons in the last layer (signal present/signal absent) with Softmax activation function in the output layer. The Softmax

activation function allows normalization of the CNN’s output to values from 0 to 1, where 1 corresponds to positive expression, 0 cor-

responds to negative expression of a givenmarker, and 0.5 corresponds to an uncertain prediction (hard case for NN, outcomes have

equal weights). This approach is also sensitive to the spatial distribution of each specificmarker. Every possible ground truth cell type

can be expressed as a sequence of markers that must be present (encoded as 1), may be present (creating two versions of this cell

type, with 0 and 1) and must be absent (encoded as 0). For example, a particular cell may be defined as a B cell if this cell is CD20+

(encoded as 1), CD21+/� (encoded as 1 or 0), and CD3� (encoded as 0)). Cosine similarity is calculated between every sequence of

cell expression and every cell type encoding vector. The final cell type is defined as the closest match based on probability. Cell an-

notations and counts across samples can be found in Table S2.
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Tessellation masks for imaging data
Masks for certain immune, myeloid, and stromal markers were generated by Otsu’s method.95 The following markers were masked

for IBEX images: CD11c, CD21, CD23, CD31, CD35, CD39, CD49a, CD68, CD163, CXCL13, Collagen IV, DC-SIGN, Desmin, Lumi-

can, LYVE-1, SPARC, a-SMA, and Vimentin. The following markers were masked for MxIF images: CD3, CD8, CD20, CD21, CD68,

DC-SIGN, Desmin, Lumican, PD-1, SPARC, and a-SMA. CD4 T cells were defined as CD3+CD8� due to an inability to detect CD4 in

the experimental conditions described for MxIF images. All markers, except for PD-1, were evaluated in a larger cohort using Cell

DIVE-IBEX. The following markers were masked for Cell DIVE-IBEX images: BCL2, CD3, CD4, CD8, CD10, CD20, CD21, CD68,

DC-SIGN, Desmin, IRF4, Ki-67, Lumican, a-SMA, SPARC, and Vimentin. All channel masks were inspected by pathologists and

compared to the raw immunofluorescence signal. In a few select instances of poor algorithm performance, thresholds weremanually

corrected using Fiji.96 We define a tessellation as a process of splitting a mask derived from amarker of interest into non-intersecting

squares that covers a full image area. A signal density heatmap is then created by computing the percentage of positive pixels in each

of these squares. Every square can be roughly considered as a ‘‘pseudo-cell’’ measuring 16x16 pixels for stromal and myeloid sub-

populations identified in IBEX images. Percentages of masks in each square ‘‘pseudo-cell’’ is equivalent to mean cell marker expres-

sion for object-based cellular segmentation.

For phenotyping stromal cells from IBEX imaging data, tessellation-based analysis was performed with over a dozen markers

(CD21, CD23, CD31, CD35, CD39, CD49a, CXCL13, Collagen IV, Desmin, Lumican, LYVE-1, SPARC, a-SMA, and Vimentin),

including several markers not exclusive to stromal cells, e.g., CD39, CD49a, SPARC). For markers expressed by stromal and

non-stromal elements, e.g., CD39 on Tregs, stromal masks were first created to mark an area of interest based on co-localization

with lineage-defining markers, e.g., CD31 for endothelial cells and vimentin for mesenchymal cells. For well-described stromal

markers (CD31, LYVE-1, CD21, Desmin, Vimentin, Lumican), tessellation masks were created directly from the channel data and

thresholded by 0.2, an empirically derived parameter. To elaborate, this limit (0.2) corresponded to the value where the amount of

‘masked pixels’ and ‘empty pixels’ were equal and intersected on an x-y plot with the ‘mask threshold’ on the x axis and ‘fraction

of pixels covered by mask’ on the y axis (Figure S3D). Clustering was then performed on masked pixel data using the unsupervised

clustering algorithm Phenograph97 with cosine distance metric and 30 nearest neighbors. For phenotyping myeloid cells from IBEX

imaging data, a similar approach was implemented using 5 markers (CD11c, CD163, CD68, DC-SIGN, and SPARC) where only the

SPARC marker was not exclusive to macrophages and dendritic cells. Although CD1c and HLA-DR were detected on myeloid cell

subtypes, these markers are also expressed on B cell subpopulations. Due to contaminating signal from B cells, the dominant pop-

ulation in FL samples, CD1c and HLA-DR were excluded from myeloid cell phenotyping. For CD68 and CD163 markers, the tessel-

lated mask was an integration of pixel-level data and corresponding macrophage segment masks. To exclude empty tessellation

squares, we filtered empty squares by a 0.1 threshold. A different masking strategy was applied for myeloid cells in order to detect

the pseudopodia of these cell types which typically cover less area than stroma. K-Means was used as a clustering algorithm. These

tessellation-based approaches were also used to define cellular communities present in both IBEX and MxIF images using 100 and

50 pixel-sized squares (Figure S6C), respectively. For these analyses we used 11 markers and the K-Means clustering algorithm. A

similar workflowwas applied to the Cell DIVE-IBEX images using 20 pixel-sized squares and themarkers included in the immune and

stromal panels (Figures 8, S8, and Table S6). Cell annotations and counts across samples can be found in Table S2.

Assessment of image analysis workflows
The precision and recall of our Mask region-convolutional neural network (R-CNN) workflow was compared to DeepCell98 and

StarDist,99 two widely used neural network-based segmentation algorithms. Validation of the trained cell segmentation model

showed high accuracy (0.80 F1-score), demonstrating superior performance compared to other methods (DeepCell and StarDist

- 0.55 and 0.78 F1-score, respectively). The pathologist-determined accuracy (0.84 mean F1-score) indicated a near-human perfor-

mance of the developed method.100 To evaluate the accuracy of our cell typing model, we compared the concordance between our

algorithm andmanual annotations by 3 pathologists for 200 cells randomly sampled from each IBEX dataset. This workflow required

the evaluation of combinations of 39 protein markers present in the IBEX images. Normalized expression values obtained from the

cell typing model allowed automated cell recognition, reporting 72–79% concordance between annotators and the algorithm.

Follicles shape analysis
To compare the follicle shape across small and large ROIs acquired using distinct imaging methods and sample preparations (IBEX/

fixed frozen versus MxIF/FFPE), masks were applied to B cell follicles and sample parameters were calculated. B cell follicle masks

from IBEX images were obtained by manual annotation from pathologists based on concentrated areas positive for CD20 and CD21

and reduced lumican signal for most samples (Figure S5A). Follicle masks were created based on CD21 and CD20 signal alone for

MxIF images. Once masks were generated, the area, minimal distance to the nearest follicle, elongation, and compactness were

calculated for each follicle. As a final step agglomerative clustering with ward linkage was performed on given follicle shape param-

eters.101 The following elongation formula was used:

m1;1+m2;2+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm1;1 � m2;2Þ2+4m2

1;2

q

m1;1+m2;2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm1;1 � m2;2Þ2+4m2

1;2

q
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Compactness formula where A and P stand for area and perimeter correspondingly: 4pA
P2 . We extended our follicle analysis to a

larger cohort (n = 29). By analyzing 4.5 times more follicles, we were able to construct a comprehensive examination of the follicular

growth pattern of FL, resulting in 5 different clusters based on 6 distinct parameters. For the Cell DIVE-IBEX images (Figures 8 and

S8), the following parameters were calculated as described before: area, minimal distance to the nearest follicle, elongation, and

compactness. Solidity was determined as the ratio of the follicle area to the convex hull area. Area, perimeter, convex hull area,

and minimal distance between follicles were calculated using the Shapely Python package (Version 2.0.1).

Community analysis of IBEX images
To perform community analysis, a cell neighborhood graph was generated with Delaunay triangulation algorithm from SciPy spatial

algorithms package using coordinates derived from cell centroids.102 In this graph, each cell is represented as a node, and adjacent

cells are connected via edges. To remove outlier edges, we aggregated lengths of all edges for all cells in the dataset across all sam-

ples, and a threshold value was selected as the 95th percentile of all lengths – 28.4 mm, edges longer than this threshold were

removed. After this operation, we assigned features for every node in the graph, which used this model: 1) cell type assigned as cate-

gorically encoded vector, 2) percentages of selected binary masks in 56.8 mm radii underneath this cell, 3) median distance of edges

connected to this node. Using this graph, an Adversarially Regularized Variational Graph Auto-Encoder103,104 was trained to obtain

short descriptive vector representation of cell neighborhoods in an unsupervised, generative-adversarial manner. The framework

consists of two models: a variational graph autoencoder and an adversarial model (3 layered perceptron). The latter model is

used for regularization of themain graph autoencoder model. During training, the autoencoder learns to correctly predict node edges

and reject randomly added non present edges. In parallel the discriminator model is trained to distinguish between learned autoen-

coder representations and their random permutations, thus regularizing the model to closely follow the latent data distribution, since

the autoencoder is rewarded for correct generation of data, close to the real distribution. Thus, in the process of training, an autoen-

coder model learns representation of tissue topology, since it can reconstruct correct contacts for a given cell and has learned rep-

resentations that closely follow the true data distribution. These representations, or embeddings, learned by the autoencoder, allow

clustering and detection of cell similarities by topological features of the given tissue.

The model was trained for a fixed number of epochs (100) and the model with lowest loss was selected for downstream analysis.

The trained autoencoder predicted embedding vectors for all samples in the cohort and these vectors were then clustered using the

K-means algorithm to obtain 15 different clusters, which represent neighborhoods of cells or communities. To facilitate community

description, themean cell composition andmeanmask percentages were calculated for each community. Communities were group-

ed based on the dominant cell type and morphological structures present in them: B- and T-cells enriched neighborhoods, myeloid-

and stroma-enriched neighborhoods. Communities were visualized by drawing cell contours and coloring them according to com-

munity type. A detailed description of IBEX communities (Figure 5) and comparison with MxIF communities (Figure 6) can be found in

Table S2. The training settings for the deep learning algorithms used in this work are given in Table S5.

Slide concordance analysis
Tessellation-based communities were used to analyze the concordance of small IBEX ROIs with large, full tissue section ROIs from

MxIF. For each sample, we performed sampling with window side sizes varying from 2,500 to 17,000 pixels (2.02–98.8 mm2) with

500 pixel steps (284 mm). Crops were sampled uniformly, with distances between centers equaling 200, 300, 400, and 500 pixels

for sides of 2500–4000, 4500–6000, 6500–8500, and 10000–17000 pixels correspondingly. Crops with a tissue area of less than

50% were excluded from further analysis. We then measured the Pearson correlation between the percentage of tessellation com-

munities for given crops and the full slide.

Number of cells to be sequenced
For Figure 7B, we predict the number of cells that need to be profiled by scRNA-seq based on frequencies obtained from IBEX im-

aging data. Cell numbers were calculated based on cell frequencies obtained from the entire 1.8x106 cell IBEX dataset. A cluster size

of 50 cells was used to estimate the number of cells to be sequenced.

Correlations between single cell communities
For Figure 7A, percentages for B cells, CD4+ T cells, and CD8+ T cells are compared between IBEX segmentation, scRNA-seq cell

typing, and Kassandra reconstruction. Myeloid cells are compared between Kassandra reconstruction from bulk RNA-seq data and

IBEX tessellation squares normalized by area of tissue imaged. Stromal cells are derived from IBEX tessellation squares normalized

by area. Statistical analysis is reported in Table S7. For Figures 7C, 7D, S7A, and S7B, fibroblast and cytokine gene signatures were

manually curated from the literature (Table S8).35,45,47,105,106 Pairwise correlations were performed between RNA-seq gene signa-

tures, described in deconvolution of bulk RNA-seq, and IBEX communities, described in community analysis of IBEX images.

Cell DIVE-IBEX imaging of FFPE tissues
Deparaffinization and antigen retrieval were performed using a Leica Bond RX (Leica Biosystems). A dual antigen retrieval approach

consisting of 30 min with Epitope Retrieval Solution 1 and then 30 min with Epitope Retrieval Solution 2 was determined to give

the best immunolabeling results.107 Slides were labeled with Hoechst (Biotium) and mounted with a 50:50 mixture of Glycerol
e9 Cancer Cell 42, 444–463.e1–e10, March 11, 2024
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(Sigma-Aldrich) and PBS. Whole slide images were acquired using the Cell DIVE22 imaging system equipped with a 20X (NA 0.75)

objective, (Leica Microsystems, Wetzlar, Germany). Slides were placed into ClickWell slide holders (Leica Microsystems, Wetzlar,

Germany) and calibration scans were performed as outlined in the Leica Microsystems Cell DIVE software (Version 4.0). Additionally,

autofluorescence (AF) images were captured and used to automatically subtract the background from each image. Serial sections

were labeled with the immune and stromal panel (Table S6) using the PELCO BioWave Pro 36500-230 microwave. Panels consisted

of the following IBEX compatible fluorophores: Hoechst, AF488, AF555, PE, AF647, DL755, AF750, and BL750 (Table S6). Following

image acquisition, slides were removed from the ClickWell slide holders, washed thoroughly to remove mounting media, and incu-

bated with 3 exchanges of 1 mg/mL LiBH4, 15 min per incubation, to completely extinguish fluorescence for a total time of 45 min.

Slides were washed thoroughly in PBS, labeled with antibodies for the next imaging cycle, loaded into ClickWell slide holders,

mounted with 50:50 Glycerol:PBS, and then imaged using the Cell DIVE. The following image processing steps were performed

by the Cell DIVE imaging software: mosaic merge of individual tiles, registration of images using a repeated marker (Hoechst labeled

nuclei), autofluorescence subtraction, and illumination correction.108 The raw individual channel tif files created by the Cell DIVEwere

combined into a multi-channel Imaris file using the open source tif2ims software available on GitHub (https://github.com/zivy/

tif2ims). Artifacts (such as fluorophore aggregates and corrupted pixels) were manually masked by 3 pathologists. For Figures S8I

and S8J, fibroblast includes fibroblastic reticular cells (FRCs)32,109 and other subtypes (myofibroblasts, smooth muscle cells, can-

cer-associated fibroblasts110). SPARC is expressed by fibroblasts, endothelial cells, macrophages, and involved in cell-matrix inter-

actions.51 Vimentin is expressed by fibroblasts and activated macrophages.109–111

Linear model identifying early relapsers
Data from the immune and stromal communities were used to create generalized linear models (GLM) for the validation cohort sam-

ples. The models were created using a binary output comparing the other FL groups (early progressors or non-progressors) to the

early relapsers. Due to low sampling size, sex, age, and ethnicity were not included in themodels. There was no significant difference

in age between the groups. To determine the communities that best separated the early relapsers from the other FL patients, we

created a linear model using every possible combination of the 16 communities. Outputs for the models were saved to determine

the number of times a community appeared in a significant model determined by the intercept p value being <0.1. The top three com-

munities appearing in significant models were then used to create a GLM. This model was applied to each patient sample and the

output was compared. The models were generated in R v4.1.3 using the stats package (v3.6.2).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed using Prism (GraphPad Version 9.4.1) and R v4.1.3 using fgsea v1.20.0. Statistical details can be

found in the figures and results. For all data, individual n representing cells or tissue sections from a patient sample are plotted with

the mean ± SEM shown. For comparisons in Figure 7A, an ANOVA with Tukey’s multiple comparison test was performed with sig-

nificance defined using reported p values (Table S7). For Figures 8 and S8, an ANOVA was used (Kruskal-Wallis test) that did not

assume a Gaussian distribution. Multiple comparison tests were performed to analyze the data between the groups. A Benjamini-

Hochberg method for false discovery rate (FDR) p value correction was used to correct p values for multiple comparisons. A cutoff

of 0.1 was used for significance. Due to several factors outlined here, it is challenging to recruit sufficient numbers of patients with

adequate tissue biopsies. For these reasons, we did not estimate the sample size or exclude any data or subjects. Samples were

assigned to groups based on clinical records.

ADDITIONAL RESOURCES

A complete list of antibodies, including positive and negative results, protocols, datasets, and software are shared in the IBEX

Imaging Community.107 The complete IBEX panel and accompanying antibody validation reports are available through the Human

Reference Atlas portal (OMAP-1) (https://humanatlas.io/omap).50
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