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Theorem 0.1 The eigenvalues of a real symmetric matrix are real.

Proof Given the symmetric real matrix A we have:

Ax = λx (1)

Where λ is an eigenvalue and x the corresponding eigenvector. Until we prove the
theorem we must assume that λ might be a complex number (λ = a+ ib) and x might
contain components which are complex too. Remembering that λx = λx and that
A = A = AT we take the conjugates of equation 1:
Ax = λx leads to Ax = λx. Transpose this to get xTA = xTλ Now taking the dot
product of the first equation with x and the last equation with x we get:
xTAx = xTλx and xTAx = xTλx
Which gives us: xTλx = xTλx
Therefore λ = λ proving that λ is real (a + bi = a− bi, so the complex coefficient is
equal to zero).

Theorem 0.2 The eigenvectors of a real symmetric matrix which correspond to dif-
ferent 1 eigenvalues are perpendicular.

Proof Let λ1 and λ2 be two different eigenvalues and x1 and x2 the corresponding
eigenvectors. This gives us the following two equations:

Ax1 = λ1x1

Ax2 = λ2x2

Taking the dot product with x2 we get:

(λ1x1)
Tx2 = (Ax1)

Tx2 = x1
TATx2 = x1

TAx2 = x1
Tλ2x2

The left side is x1
Tλ1x2 and the right side is x1

Tλ2x2. Since λ1 ̸= λ2 this proves that
x1

Tx2 = 0. The eigenvectors are perpendicular.

1Proof that all eigenvectors of a real symmetric matrix are orthogonal to each other can be found
in [1]
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Theorem 0.3 Given a real symmetric matrix A the solution to the optimization
problem:

1.
min
x

xTAx, s.t.∥x∥ = 1

is the eigenvector corresponding to the minimal eigenvalue.

2.
max

x
xTAx, s.t.∥x∥ = 1

is the eigenvector corresponding to the maximal eigenvalue.

Proof 1. Using Lagrange multipliers the optimization problem is rewritten as:

min
x

L(x, λ) = xTAx+ λ(1− xTx)

where at the optimum we have the following necessary conditions:

∂L
∂x

= (Ax+ xTA)− 2λx = 0

∂L
∂λ

= 1− xTx = 0
(2)

as A is symmetric we have:
2Ax = 2λx

The minimum is thus obtained for x which is an eigenvector of the matrix A.
There are n mutually orthogonal (see Theorem 0.2) eigenvectors ei associated
with A, that span Rn. Which means that ∀x, x =

∑
wiei.

Looking back at our original problem we have:

xTAx =
(∑

wiei
T
)
A
(∑

wiei

)
=

∑
wiei

T
∑

wiλiei =
∑

λiw
2
i

Arranging the eigenvectors in order λ1 ≥ . . . ≥ λn (possible as they are real
values, see Theorem 0.1) we have:∑

λnw
2
i ≤

∑
λiw

2
i = xTAx

At the minimum we also have:

xTx =
∑

w2
i = 1

Plugging this back into the previous equation we get:

λn =
∑

λnw
2
i ≤ xTAx

The minimal value is bounded from below by the smallest eigenvalue and is
attained when x = en.
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2. The same proof, only now the quadratic term, xTAx, is bounded from above.

Theorem 0.4 Let A be a real nxn symmetric matrix with eigenvalues λ1 ≥ λ2 ≥
· · · ≥ λn and corresponding orthonormal eigenvectors x1,x2, . . . ,xn (see Theorem 0.2).
Define Xk = (x1,x2, . . . ,xk) (k = 1, 2, . . . , n− 1) and X = (x1,x2, . . . ,xn). Then if
we assume that α ̸= 0, we have the following:

1.

sup
α

{
αTAα

αTα

}
= λ1

and the supremum is attained if α = x1.

2.

sup
XT

k α=0

{
αTAα

αTα

}
= λk+1

and the supreumum is attained if α = xk+1.

3.

inf
α

{
αTAα

αTα

}
= λn

and the infimum is attained if α = xn.

4. If Xn−k = (xn−k+1,xn−k+2, . . . ,xn) then

inf
XT

n−kα=0

{
αTAα

αTα

}
= λn−k

and the infimum is attained if α = xn−k.

Proof 1. Let α = Xy = y1x1 + y2x2 + · · ·+ ynxn and

Λ =

 λ1

. . .

λn

.
Then

αTAα

αTα
=

yTXTAXy

yTy
=

yTXTXΛy

yTy
=

(
∑

i λiyi
2)

yTy
≤ λ1y

Ty

yTy
= λ1

with equality when y1 = 1, y2 = y3 = · · · = yn = 0, that is, when α = x1.

2. If α ⊥ x1,x2, . . . ,xk, then y1 = y2 = · · · = yk = 0. The result then follows with
the same argument as 1.

3. Same proof as 1 but with the inequality reversed.

4. Same proof as 2 but with inequality reversed.
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1 Matrices of the form AAT

Theorem 1.1 Matrices of the form AAT , where A is non-singular, have the following
properties:

1. They are positive definite.

2. They have positive eigenvalues.

3. The Singular Value Decomposition (SVD) of A yields the eigenvalues and eigen-
vectors of AAT .

Proof 1. A matrix B is positive definite if:

∀x, x ̸= 0 xTBx > 0

Given a matrix B of the form AAT we have:

xTBx = xTAATx = (ATx)T (ATx) = ∥ATx∥2 > 0

2. Given a matrix B of the form AAT with eigenvalue λ and corresponding eigen-
vector x we have:

Bx = λx

Premultiplying by xT we get:

xTBx = λxTx = λ∥x∥2

As B is positive definite we have:

λ∥x∥2 > 0

⇓
λ > 0

3. The Singular Value Decomposition of the matrix A is given by

Am×n = Um×nSn×nV
T
n×n

where the columns of U are an orthonormal basis for the column space of A, the
rows of V are an orthonormal basis for the row space of A and S is a diagonal
matrix. We now look at the matrix AAT :

AAT = (USV T )(V SUT ) = US2UT

Postmultipying this equation by U yields the following equation:

(AAT )U = US2

The eigenvectors of AAT are the columns of U with corrosponding eigenvalues
in S.
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2 Eigenvalues/Eigenvectors of a 2 × 2 Symmetric

Matrix

Given a symmetric matrix:

A =

[
a11 a12
a12 a22

]
We obtain the eigenvalues of A by solving the characteristic equation:

det(A− λI) = 0

For the matrix A this is a quadratic equation:

(a11 − λ)(a22 − λ)− a212 = λ2 − (a11 + a22)λ+ (a11a22 − a212)

whose solution yields the eigenvalues:

λ1 =
a11 + a22 +

√
(a11 − a22)2 + 4a212
2

λ2 =
a11 + a22 −

√
(a11 − a22)2 + 4a212
2

and corresponding eigenvectors:

v1 = [λ1 − a22, a12] v2 = [−a12, λ1 − a22]

Note that when a12 → 0 the eigenvectors are:

a11 → 0 a22 → 0
v1 = [0, 1] v2 = [1, 0] v1 = [1, 0] v2 = [0, 1]
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