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Theorem 0.1 The eigenvalues of a real symmetric matriz are real.

Proof Given the symmetric real matrix A we have:
Ax = Mx (1)

Where A is an eigenvalue and x the corresponding eigenvector. Until we prove the
theorem we must assume that A\ might be a complex number (A = a+1ib) and x might
contain components which are complex too. Remembering that Ax = XX and that
A=A = AT we take the conjugates of equation 1:

Ax = Mx leads to AX = MX. Transpose this to get X' A = X'\ Now taking the dot
product of the first equation with X and the last equation with x we get:

X' Ax = X" x and X7 Ax = X7 Ax

Which gives us: X' Ax = X \x

Therefore A = X proving that A is real (a + bi = a — bi, so the complex coefficient is
equal to zero).

Theorem 0.2 The eigenvectors of a real symmetric matriz which correspond to dif-
ferent ! eigenvalues are perpendicular.

Proof Let \; and \; be two different eigenvalues and x; and x5 the corresponding
eigenvectors. This gives us the following two equations:

AXI = /\1X1
AXz = )\2X2

Taking the dot product with x5 we get:

()\IX]_)TX2 = (AX1>TX2 = XlTATX2 = XlTAX2 = X]_T)\sz

The left side is X137 X\1X2 and the right side is x17 \ox5. Since A\; # )y this proves that

x17x9 = 0. The eigenvectors are perpendicular.

'Proof that all eigenvectors of a real symmetric matriz are orthogonal to each other can be found

in [1]



Theorem 0.3 Given a real symmetric matriz A the solution to the optimization
problem:

1.
minx’ Ax, s.t|x|| =1

18 the eirgenvector corresponding to the minimal eigenvalue.

maxx’ Ax, s.t.|x| =1
X

15 the eigenvector corresponding to the maximal eigenvalue.

Proof 1. Using Lagrange multipliers the optimization problem is rewritten as:

min L(x, \) = x* Ax + (1 — x'x)

where at the optimum we have the following necessary conditions:

O — (Ax+xTA) —2Xx =0

L _ 1 Te _
m_l x'x=0

as A is symmetric we have:
2Ax = 2)x

The minimum is thus obtained for x which is an eigenvector of the matrix A.
There are n mutually orthogonal (see Theorem 0.2) eigenvectors e; associated
with A, that span R™. Which means that Vx, x =) w;e;.

Looking back at our original problem we have:

x Ax = <Z wieiT> A (Z Uh'ei> = Z wie;” Z wiAie; = Z Aiw?

Arranging the eigenvectors in order A; > ... > A, (possible as they are real
values, see Theorem 0.1) we have:

Z Awi < Z \w? = xT Ax
At the minimum we also have:
x'x = Z w? =1
Plugging this back into the previous equation we get:
Ap = Z )\nw? < x'Ax

The minimal value is bounded from below by the smallest eigenvalue and is
attained when x = e,,.



2. The same proof, only now the quadratic term, x” Ax, is bounded from above.

Theorem 0.4 Let A be a real nxn symmetric matriz with eigenvalues \y > Ay >
-+« >\, and corresponding orthonormal eigenvectors Xy, Xz, . .., Xyn (see Theorem 0.2).
Define Xy, = (x1,X2,...,xx) (k=1,2,...,n—1) and X = (Xx1,X2,...,Xn). Then if
we assume that o # 0, we have the following:

1.
al Aa \
su =
ap oo 1
and the supremum is attained if o = xX1.
2.
ol Aa
sSup T = Ait1
Xgazo a’ o
and the supreumum is attained if o = Xy 1.
3. T4
_ o' Aa
1gf{ oTo } =n
and the infimum is attained if o = Xy,.
4. ]f Xn—k = (Xn—k+17 Xn—k+2,--- ,Xn) then

) ol Aa
inf - = A—rk
XTT a=0 o«

1—k

and the infimum is attained if o = Xp_x.

Proof 1. Let a =Xy = y1X1 + 99X2 + -+ - + ynX, and

A1
A=
An
Then
al Ao _ yIXTAXy _ yIXTX Ay _ > hiyid) < Myly _ )
aTa yTy yTy iy — ¥y
with equality when y; = 1,y = y3 = --- =y, = 0, that is, when a = x;.
2. fa 1L x1,Xg,...,Xk, then y; = yo = --- =y = 0. The result then follows with

the same argument as 1.
3. Same proof as 1 but with the inequality reversed.

4. Same proof as 2 but with inequality reversed.



1 Matrices of the form AAT

Theorem 1.1 Matrices of the form AAT, where A is non-singular, have the following
properties:

1.
2.
3.

They are positive definite.
They have positive eigenvalues.

The Singular Value Decomposition (SVD) of A yields the eigenvalues and eigen-
vectors of AAT.

Proof 1. A matrix B is positive definite if:

2.

Vx, x#Z0 x'Bx>0
Given a matrix B of the form AA” we have:
x' Bx = xT AATx = (ATx)T(ATx) = || ATx||* > 0

Given a matrix B of the form AA” with eigenvalue A\ and corresponding eigen-
vector x we have:

Bx = \x
Premultiplying by x we get:
x' Bx = Ax'x = \||x||?
As B is positive definite we have:

Al > 0
4
A >0

The Singular Value Decomposition of the matrix A is given by

Amxn = UanSanVT

nxn

where the columns of U are an orthonormal basis for the column space of A, the
rows of V' are an orthonormal basis for the row space of A and S is a diagonal
matrix. We now look at the matrix AAT:

AAT = (USVTY(vSUT) = Ustu”
Postmultipying this equation by U yields the following equation:
(AATYU = US?

The eigenvectors of AA” are the columns of U with corrosponding eigenvalues
in S.



2 Eigenvalues/Eigenvectors of a 2 x 2 Symmetric
Matrix

Given a symmetric matrix:

A= {Gn a12:|

aiz2 A2

We obtain the eigenvalues of A by solving the characteristic equation:
det(A— M) =0
For the matrix A this is a quadratic equation:
(a11 — A) (a2 — A) — aly = A\* — (@11 + ag)\ + (ap1a — aiy)

whose solution yields the eigenvalues:

_ + az + \/(an — ag)? + 4ai, _ + ag — \/(an — ag)? + 4ai,
2 2

A
and corresponding eigenvectors:
V1 = [)\1 — 499, CL12] Vo = [—a12, )\1 — (122]

Note that when a5 — 0 the eigenvectors are:

a;; — 0 a9y — 0
V1 = [0, 1] Vo = [1,0] V1 = [1,0] Vo = [0, ]_]
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