Symmetric Matrices

Ziv Yaniv

Version 1.0
March 202012

Theorem 0.1 The eigenvalues of a real symmetric matrix are real.
Proof Given the symmetric real matrix A we have:

$$
\begin{equation*}
A \mathbf{x}=\lambda \mathbf{x} \tag{1}
\end{equation*}
$$

Where λ is an eigenvalue and \mathbf{x} the corresponding eigenvector. Until we prove the theorem we must assume that λ might be a complex number $(\lambda=a+i b)$ and \mathbf{x} might contain components which are complex too. Remembering that $\overline{\lambda \mathbf{x}}=\bar{\lambda} \overline{\mathbf{x}}$ and that $A=\bar{A}=A^{T}$ we take the conjugates of equation 1 :
$\overline{A \mathbf{x}}=\overline{\lambda \mathbf{x}}$ leads to $A \overline{\mathbf{x}}=\bar{\lambda} \overline{\mathbf{x}}$. Transpose this to get $\overline{\mathbf{x}}^{T} A=\overline{\mathbf{x}}^{T} \bar{\lambda}$ Now taking the dot product of the first equation with $\overline{\mathbf{x}}$ and the last equation with \mathbf{x} we get:
$\overline{\mathbf{x}}^{T} A \mathbf{x}=\overline{\mathbf{x}}^{T} \lambda \mathbf{x}$ and $\overline{\mathbf{x}}^{T} A \mathbf{x}=\overline{\mathbf{x}}^{T} \bar{\lambda} \mathbf{x}$
Which gives us: $\overline{\mathbf{x}}^{T} \lambda \mathbf{x}=\overline{\mathbf{x}}^{T} \bar{\lambda} \mathbf{x}$
Therefore $\lambda=\bar{\lambda}$ proving that λ is real ($a+b i=a-b i$, so the complex coefficient is equal to zero).

Theorem 0.2 The eigenvectors of a real symmetric matrix which correspond to different ${ }^{1}$ eigenvalues are perpendicular.

Proof Let λ_{1} and λ_{2} be two different eigenvalues and $\mathbf{x}_{\mathbf{1}}$ and $\mathbf{x}_{\mathbf{2}}$ the corresponding eigenvectors. This gives us the following two equations:

$$
\begin{aligned}
& A \mathbf{x}_{\mathbf{1}}=\lambda_{1} \mathbf{x}_{\mathbf{1}} \\
& A \mathbf{x}_{\mathbf{2}}=\lambda_{2} \mathbf{x}_{\mathbf{2}}
\end{aligned}
$$

Taking the dot product with $\mathbf{x}_{\mathbf{2}}$ we get:

$$
\left(\lambda_{1} \mathbf{x}_{\mathbf{1}}\right)^{T} \mathbf{x}_{\mathbf{2}}=\left(A \mathbf{x}_{\mathbf{1}}\right)^{T} \mathbf{x}_{\mathbf{2}}=\mathbf{x}_{1}^{T} A^{T} \mathbf{x}_{\mathbf{2}}=\mathbf{x}_{\mathbf{1}}^{T} A \mathbf{x}_{\mathbf{2}}=\mathbf{x}_{\mathbf{1}}{ }^{T} \lambda_{2} \mathbf{x}_{\mathbf{2}}
$$

The left side is $\mathbf{x}_{1}{ }^{T} \lambda_{1} \mathbf{x}_{\mathbf{2}}$ and the right side is $\mathbf{x}_{\mathbf{1}}{ }^{T} \lambda_{2} \mathbf{x}_{\mathbf{2}}$. Since $\lambda_{1} \neq \lambda_{2}$ this proves that $\mathbf{x}_{1}{ }^{T} \mathbf{x}_{\mathbf{2}}=0$. The eigenvectors are perpendicular.

[^0]Theorem 0.3 Given a real symmetric matrix A the solution to the optimization problem:
1.

$$
\min _{\mathbf{x}} \mathbf{x}^{T} A \mathbf{x}, \quad \text { s.t. }\|\mathbf{x}\|=1
$$

is the eigenvector corresponding to the minimal eigenvalue.
2.

$$
\max _{\mathbf{x}} \mathbf{x}^{T} A \mathbf{x}, \quad \text { s.t. }\|\mathbf{x}\|=1
$$

is the eigenvector corresponding to the maximal eigenvalue.

Proof 1. Using Lagrange multipliers the optimization problem is rewritten as:

$$
\min _{\mathbf{x}} L(\mathbf{x}, \lambda)=\mathbf{x}^{T} A \mathbf{x}+\lambda\left(1-\mathbf{x}^{T} \mathbf{x}\right)
$$

where at the optimum we have the following necessary conditions:

$$
\begin{align*}
& \frac{\partial L}{\partial \mathbf{x}}=\left(A \mathbf{x}+\mathbf{x}^{T} A\right)-2 \lambda \mathbf{x}=0 \\
& \frac{\partial L}{\partial \lambda}=1-\mathbf{x}^{T} \mathbf{x}=0 \tag{2}
\end{align*}
$$

as A is symmetric we have:

$$
2 A \mathbf{x}=2 \lambda \mathbf{x}
$$

The minimum is thus obtained for \mathbf{x} which is an eigenvector of the matrix A. There are n mutually orthogonal (see Theorem 0.2) eigenvectors $\mathbf{e}_{\mathbf{i}}$ associated with A, that span \mathbb{R}^{n}. Which means that $\forall \mathbf{x}, \mathbf{x}=\sum w_{i} \mathbf{e}_{\mathbf{i}}$.
Looking back at our original problem we have:

$$
\mathbf{x}^{T} A \mathbf{x}=\left(\sum w_{i} \mathbf{e}_{\mathbf{i}}^{T}\right) A\left(\sum w_{i} \mathbf{e}_{\mathbf{i}}\right)=\sum w_{i} \mathbf{e}_{\mathbf{i}}^{T} \sum w_{i} \lambda_{i} \mathbf{e}_{\mathbf{i}}=\sum \lambda_{i} w_{i}^{2}
$$

Arranging the eigenvectors in order $\lambda_{1} \geq \ldots \geq \lambda_{n}$ (possible as they are real values, see Theorem 0.1) we have:

$$
\sum \lambda_{n} w_{i}^{2} \leq \sum \lambda_{i} w_{i}^{2}=\mathbf{x}^{T} A \mathbf{x}
$$

At the minimum we also have:

$$
\mathbf{x}^{T} \mathbf{x}=\sum w_{i}^{2}=1
$$

Plugging this back into the previous equation we get:

$$
\lambda_{n}=\sum \lambda_{n} w_{i}^{2} \leq \mathbf{x}^{T} A \mathbf{x}
$$

The minimal value is bounded from below by the smallest eigenvalue and is attained when $\mathbf{x}=\mathbf{e}_{\mathbf{n}}$.
2. The same proof, only now the quadratic term, $\mathbf{x}^{T} A \mathbf{x}$, is bounded from above.

Theorem 0.4 Let A be a real nxn symmetric matrix with eigenvalues $\lambda_{1} \geq \lambda_{2} \geq$ $\cdots \geq \lambda_{n}$ and corresponding orthonormal eigenvectors $\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}, \ldots, \mathbf{x}_{\mathbf{n}}$ (see Theorem 0.2). Define $X_{k}=\left(\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}, \ldots, \mathbf{x}_{\mathbf{k}}\right)(k=1,2, \ldots, n-1)$ and $X=\left(\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}, \ldots, \mathbf{x}_{\mathbf{n}}\right)$. Then if we assume that $\alpha \neq 0$, we have the following:
1.

$$
\sup _{\alpha}\left\{\frac{\alpha^{T} A \alpha}{\alpha^{T} \alpha}\right\}=\lambda_{1}
$$

and the supremum is attained if $\alpha=\mathbf{x}_{\mathbf{1}}$.
2.

$$
\sup _{X_{k}^{T} \alpha=0}\left\{\frac{\alpha^{T} A \alpha}{\alpha^{T} \alpha}\right\}=\lambda_{k+1}
$$

and the supreumum is attained if $\alpha=\mathbf{x}_{\mathbf{k}+\mathbf{1}}$.
3.

$$
\inf _{\alpha}\left\{\frac{\alpha^{T} A \alpha}{\alpha^{T} \alpha}\right\}=\lambda_{n}
$$

and the infimum is attained if $\alpha=\mathbf{x}_{\mathbf{n}}$.
4. If $X_{n-k}=\left(\mathbf{x}_{\mathbf{n}-\mathbf{k}+\mathbf{1}}, \mathbf{x}_{\mathbf{n}-\mathbf{k}+\mathbf{2}}, \ldots, \mathbf{x}_{\mathbf{n}}\right)$ then

$$
\inf _{X_{n-k}^{T} \alpha=0}\left\{\frac{\alpha^{T} A \alpha}{\alpha^{T} \alpha}\right\}=\lambda_{n-k}
$$

and the infimum is attained if $\alpha=\mathbf{x}_{\mathbf{n}-\mathbf{k}}$.

Proof 1. Let $\alpha=X \mathbf{y}=y_{1} \mathbf{x}_{\mathbf{1}}+y_{2} \mathbf{x}_{\mathbf{2}}+\cdots+y_{n} \mathbf{x}_{\mathbf{n}}$ and $\Lambda=\left[\begin{array}{lll}\lambda_{1} & & \\ & \ddots & \\ & & \lambda_{n}\end{array}\right]$.
Then

$$
\frac{\alpha^{T} A \alpha}{\alpha^{T} \alpha}=\frac{\mathbf{y}^{T} X^{T} A X \mathbf{y}}{\mathbf{y}^{T} \mathbf{y}}=\frac{\mathbf{y}^{T} X^{T} X \Lambda \mathbf{y}}{\mathbf{y}^{T} \mathbf{y}}=\frac{\left(\sum_{i} \lambda_{i} \mathbf{y}_{\mathbf{i}}{ }^{2}\right)}{\mathbf{y}^{T} \mathbf{y}} \leq \frac{\lambda_{1} \mathbf{y}^{T} \mathbf{y}}{\mathbf{y}^{T} \mathbf{y}}=\lambda_{1}
$$

with equality when $y_{1}=1, y_{2}=y_{3}=\cdots=y_{n}=0$, that is, when $\alpha=\mathbf{x}_{\mathbf{1}}$.
2. If $\alpha \perp \mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}, \ldots, \mathbf{x}_{\mathbf{k}}$, then $y_{1}=y_{2}=\cdots=y_{k}=0$. The result then follows with the same argument as 1 .
3. Same proof as 1 but with the inequality reversed.
4. Same proof as 2 but with inequality reversed.

1 Matrices of the form $A A^{T}$

Theorem 1.1 Matrices of the form $A A^{T}$, where A is non-singular, have the following properties:

1. They are positive definite.
2. They have positive eigenvalues.
3. The Singular Value Decomposition (SVD) of A yields the eigenvalues and eigenvectors of $A A^{T}$.

Proof 1. A matrix B is positive definite if:

$$
\forall \mathbf{x}, \mathbf{x} \neq 0 \quad \mathbf{x}^{T} B \mathbf{x}>0
$$

Given a matrix B of the form $A A^{T}$ we have:

$$
\mathbf{x}^{T} B \mathbf{x}=\mathbf{x}^{T} A A^{T} \mathbf{x}=\left(A^{T} \mathbf{x}\right)^{T}\left(A^{T} \mathbf{x}\right)=\left\|A^{T} \mathbf{x}\right\|^{2}>0
$$

2. Given a matrix B of the form $A A^{T}$ with eigenvalue λ and corresponding eigenvector \mathbf{x} we have:

$$
B \mathbf{x}=\lambda \mathbf{x}
$$

Premultiplying by \mathbf{x}^{T} we get:

$$
\mathbf{x}^{T} B \mathbf{x}=\lambda \mathbf{x}^{T} \mathbf{x}=\lambda\|\mathbf{x}\|^{2}
$$

As B is positive definite we have:

$$
\begin{array}{rll}
\lambda\|\mathbf{x}\|^{2} & >0 \\
& \Downarrow & \\
& >0
\end{array}
$$

3. The Singular Value Decomposition of the matrix A is given by

$$
A_{m \times n}=U_{m \times n} S_{n \times n} V_{n \times n}^{T}
$$

where the columns of U are an orthonormal basis for the column space of A, the rows of V are an orthonormal basis for the row space of A and S is a diagonal matrix. We now look at the matrix $A A^{T}$:

$$
A A^{T}=\left(U S V^{T}\right)\left(V S U^{T}\right)=U S^{2} U^{T}
$$

Postmultipying this equation by U yields the following equation:

$$
\left(A A^{T}\right) U=U S^{2}
$$

The eigenvectors of $A A^{T}$ are the columns of U with corrosponding eigenvalues in S.

2 Eigenvalues/Eigenvectors of a 2×2 Symmetric Matrix

Given a symmetric matrix:

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{12} & a_{22}
\end{array}\right]
$$

We obtain the eigenvalues of A by solving the characteristic equation:

$$
\operatorname{det}(A-\lambda I)=0
$$

For the matrix A this is a quadratic equation:

$$
\left(a_{11}-\lambda\right)\left(a_{22}-\lambda\right)-a_{12}^{2}=\lambda^{2}-\left(a_{11}+a_{22}\right) \lambda+\left(a_{11} a_{22}-a_{12}^{2}\right)
$$

whose solution yields the eigenvalues:

$$
\lambda_{1}=\frac{a_{11}+a_{22}+\sqrt{\left(a_{11}-a_{22}\right)^{2}+4 a_{12}^{2}}}{2} \quad \lambda_{2}=\frac{a_{11}+a_{22}-\sqrt{\left(a_{11}-a_{22}\right)^{2}+4 a_{12}^{2}}}{2}
$$

and corresponding eigenvectors:

$$
\mathbf{v}_{\mathbf{1}}=\left[\lambda_{1}-a_{22}, a 12\right] \quad \mathbf{v}_{\mathbf{2}}=\left[-a 12, \lambda_{1}-a_{22}\right]
$$

Note that when $a_{12} \rightarrow 0$ the eigenvectors are:

$$
\begin{array}{cc}
a_{11} \rightarrow 0 & a_{22} \rightarrow 0 \\
\mathbf{v}_{\mathbf{1}}=[0,1] \mathbf{v}_{\mathbf{2}}=[1,0] & \mathbf{v}_{\mathbf{1}}=[1,0] \mathbf{v}_{\mathbf{2}}=[0,1]
\end{array}
$$

References

[1] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins University Press, third edition, 1996.

[^0]: ${ }^{1}$ Proof that all eigenvectors of a real symmetric matrix are orthogonal to each other can be found in [1]

