Kaczmarz's Algorithm For Solving Large Linear Systems*

Ziv Yaniv

Version 1.0
January 302012

Figure 1: Hyper-plane representing one linear equation, with two consecutive approximate solutions. The plane's normal is given by $\frac{a_{i}}{\sqrt{{a_{i}{ }^{T} a_{i}}_{i}^{e}}}$, and the distance from the origin is given by $\frac{p_{i}}{\sqrt{\mathbf{a}_{\mathrm{i}}^{\mathrm{T}} \mathrm{a}_{\mathrm{i}}}}$.

Given a large set of linear equations, $A \mathbf{x}=\mathbf{p}$, we seek a solution which does not require inversion of the matrix A. This summary describes Kaczmarz's [1] projection based approach for estimating this solution.

[^0]In expanded form we have:

$$
\begin{gathered}
a_{1,1} x_{1}+a_{1,2} x_{2}+\cdots a_{1, N} x_{N}=p_{1} \\
a_{2,1} x_{1}+a_{2,2} x_{2}+\cdots a_{2, N} x_{N}=p_{2} \\
\vdots \\
a_{M, 1} x_{1}+a_{M, 2} x_{2}+\cdots a_{M, N} x_{N}=p_{M}
\end{gathered}
$$

Each of the equations defines a hyper-plane. If there exists a solution to the equation system, it is the intersection point of all planes. Figure 1 illustrates the projection based approach of Kaczmarz's algorithm.
Given an approximate solution $\mathbf{x}^{(\mathbf{k})}$ we project it onto a hyper-plane to obtain our next approximation $\mathbf{x}^{(\mathbf{k}+\mathbf{1})}$. Without prior knowledge, the initial approximation can be arbitrarily set to $\mathbf{x}^{(\mathbf{0})}=\mathbf{0}$.
Note that the initialization allows explicit incorporation of prior knowledge, entries, x_{i}, that have known values. ${ }^{1}$
We thus have:

$$
\begin{align*}
\mathbf{x}^{(\mathbf{k}+\mathbf{1})} & =\mathbf{x}^{(\mathbf{k})}-\frac{\mathbf{a}_{\mathbf{i}}^{\mathbf{T}} \mathbf{x}^{(\mathbf{k})}-p_{i}}{\sqrt{\mathbf{a}_{\mathbf{i}}^{\mathbf{T}} \mathbf{a}_{\mathbf{i}}}} \frac{\mathbf{a}_{\mathbf{i}}}{\sqrt{\mathbf{a}_{\mathbf{i}}^{\mathrm{T}} \mathbf{a}_{\mathbf{i}}}} \\
& =\mathbf{x}^{(\mathbf{k})}-\frac{\mathbf{a}_{\mathbf{i}}^{\mathrm{T}} \mathbf{x}^{(\mathbf{k})}-p_{i}}{\mathbf{a}_{\mathbf{i}}^{\mathbf{T}} \mathbf{a}_{\mathbf{i}}} \mathbf{a}_{\mathbf{i}} \tag{1}
\end{align*}
$$

We now show that this projection based method converges, and that it converges to the solution \mathbf{x}^{*}. This is done by analyzing the relationship between the residuals of successive approximations $\mathbf{x}^{(\mathbf{k})}, \mathbf{x}^{(\mathbf{k}+\mathbf{1})}$.

$$
\left\|\mathbf{x}^{(\mathbf{k}+\mathbf{1})}-\mathbf{x}^{*}\right\|^{2}=\left\|\mathbf{x}^{(\mathbf{k})}-\mathbf{x}^{*}-\frac{\mathbf{a}_{\mathbf{i}}^{\mathrm{T}} \mathbf{x}^{(\mathbf{k})}-p_{i}}{\mathbf{a}_{\mathbf{i}}^{\mathbf{T}} \mathbf{a}_{\mathbf{i}}} \mathbf{a}_{\mathbf{i}}\right\|^{2}
$$

Using the identity $\|\mathbf{x}+\mathbf{y}\|^{2}=\|\mathbf{x}\|^{2}+2 \mathbf{x}^{T} \mathbf{y}+\|\mathbf{y}\|^{2}$ we have:

$$
\begin{aligned}
\left\|\mathbf{x}^{(\mathbf{k}+\mathbf{1})}-\mathbf{x}^{*}\right\|^{2} & =\left\|\mathbf{x}^{(\mathbf{k})}-\mathbf{x}^{*}\right\|^{2}-2 \frac{\mathbf{a}_{\mathbf{i}}^{\mathbf{T}} \mathbf{x}^{(\mathbf{k})}-p_{i}}{\mathbf{a}_{\mathbf{i}}^{\mathbf{T}} \mathbf{a}_{\mathbf{i}}} \mathbf{a}_{\mathbf{i}}^{\mathbf{T}}\left(\mathbf{x}^{(\mathbf{k})}-\mathbf{x}^{*}\right)+\frac{\left(\mathbf{a}_{\mathbf{i}}^{\mathbf{T}} \mathbf{x}^{(\mathbf{k})}-p_{i}\right)^{2}}{\mathbf{a}_{\mathbf{i}}^{\mathbf{T}} \mathbf{a}_{\mathbf{i}}} \\
& =\left\|\mathbf{x}^{(\mathbf{k})}-\mathbf{x}^{*}\right\|^{2}-\frac{\mathbf{a}_{\mathbf{i}}^{\mathbf{T}} \mathbf{x}^{(\mathbf{k})}-p_{i}}{\mathbf{a}_{\mathbf{i}}^{\mathbf{T}} \mathbf{a}_{\mathbf{i}}}\left(2 \mathbf{a}_{\mathbf{i}}^{\mathbf{T}} \mathbf{x}^{(\mathbf{k})}-2 \mathbf{a}_{\mathbf{i}}^{\mathbf{T}} \mathbf{x}^{*}-\mathbf{a}_{\mathbf{i}}^{\mathbf{T}} \mathbf{x}^{(\mathbf{k})}+p_{i}\right)
\end{aligned}
$$

Substituting $\mathbf{a}_{\mathbf{i}}^{\mathbf{T}} \mathbf{x}^{*}=p_{i}$ into the equation above we get:

$$
\begin{aligned}
\left\|\mathbf{x}^{(\mathbf{k}+\mathbf{1})}-\mathbf{x}^{*}\right\|^{2} & =\left\|\mathbf{x}^{(\mathbf{k})}-\mathbf{x}^{*}\right\|^{2}-\frac{\mathbf{a}_{\mathbf{i}}^{\mathbf{T}} \mathbf{x}^{(\mathbf{k})}-p_{i}}{\mathbf{a}_{\mathbf{i}}^{\mathbf{T}} \mathbf{a}_{\mathbf{i}}}\left(2 \mathbf{a}_{\mathbf{i}}^{\mathbf{T}} \mathbf{x}^{(\mathbf{k})}-2 p_{i}-\mathbf{a}_{\mathbf{i}}^{\mathbf{T}} \mathbf{x}^{(\mathbf{k})}+p_{i}\right) \\
& =\left\|\mathbf{x}^{(\mathbf{k})}-\mathbf{x}^{*}\right\|^{2}-\frac{\left(\mathbf{a}_{\mathbf{i}}^{\mathbf{T}} \mathbf{x}^{(\mathbf{k})}-p_{i}\right)^{2}}{\mathbf{a}_{\mathbf{i}}^{\mathbf{T}} \mathbf{a}_{\mathbf{i}}}
\end{aligned}
$$

[^1]The second term of the equation above is non-negative. We thus have:

$$
\left\|\mathbf{x}^{(\mathbf{k}+\mathbf{1})}-\mathrm{x}^{*}\right\|^{2} \leq\left\|\mathrm{x}^{(\mathbf{k})}-\mathrm{x}^{*}\right\|^{2}
$$

Therefore, $\left\{\left\|\mathbf{x}^{(\mathbf{k})}-\mathbf{x}^{*}\right\|^{2}\right\}$ is a non-increasing sequence, bounded from below, $\left\|\mathbf{x}^{(\mathbf{k})}-\mathbf{x}^{*}\right\|^{2} \geq 0$. Hence it converges.
We now observe that:

$$
\left\|\mathbf{x}^{(\mathbf{k})}-\mathbf{x}^{*}\right\|^{2}=\left\|\mathbf{x}^{(\mathbf{0})}-\mathbf{x}^{*}\right\|^{2}-\sum_{i=0}^{k-1} \frac{\left(\mathbf{a}_{\mathbf{r}(\mathbf{i})}^{\mathbf{T}} \mathbf{x}^{(\mathbf{i})}-p_{r(i)}\right)^{2}}{\mathbf{a}_{\mathbf{r}(\mathbf{i})}^{\mathbf{T}} \mathbf{a}_{\mathbf{r}(\mathbf{i})}}
$$

where $r(i)$ is the index of the row used for projection of $\mathbf{x}^{(\mathbf{i})}$.
as the sequence $\left\{\left\|\mathbf{x}^{(\mathbf{k})}-\mathbf{x}^{*}\right\|^{2}\right\}$ converges we see that

$$
\sum_{i=0}^{\infty} \frac{\left(\mathbf{a}_{\mathbf{r}(\mathbf{i})}^{\mathbf{T}} \mathbf{x}^{(\mathbf{i})}-p_{r(i)}\right)^{2}}{\mathbf{a}_{\mathbf{r}(\mathbf{i})}^{\mathbf{T}} \mathbf{a}_{\mathbf{r}(\mathbf{i})}}<\infty
$$

consequentially (after setting $p_{i}=\mathbf{a}_{\mathbf{r}(\mathbf{i})}^{\mathbf{T}} \mathbf{x}^{*}$)

$$
\lim _{k \rightarrow \infty} \mathbf{a}_{\mathbf{r}(\mathbf{i})}^{\mathbf{T}}\left(\mathbf{x}^{(\mathbf{k})}-\mathbf{x}^{*}\right)=0
$$

Giving us

$$
\lim _{k \rightarrow \infty} \mathbf{x}^{(\mathbf{k})}=\mathbf{x}^{*}
$$

References

[1] S. Kaczmarz, Angenäherte Auflösung von Systemen linearer Gleichungen, Bull. Acad. Polon. Sci. ct Lettres A, vol. 35, pp. 355-357, 1937.

[^0]: *Notation:
 Matrices, A.
 Column vectors, a.
 Scalars, a.

[^1]: ${ }^{1}$ In the case of computed tomography we may know which areas are empty space (air) and thus have a value of $x_{i}=-1000 \mathrm{HU}$.

