
Edge Detection

Ziv Yaniv

Version 1.1
February 15 2012

This lecture summary deals with the low level image processing task of edge detection.
Edges are discontinuities, significant local changes, in image intensities which arise
from three sources: (1)projection of 3D contours (2)texture present on the 3D surfaces
(3)shadows cast by the imaged objects.

The summary includes the classical derivative based operators due to Canny [2], and
Marr [7] and one non derivative based operator SUSAN [9].

We will not deal with the subject of algorithm evaluation. People which would like
to read about this subject are referred to [1, 5, 8] evaluation studies of edge detection
algorithms according to different criteria.

The summary is divided into three sections: (1) Derivative based operators. (2) The
SUSAN edge detector. (3) Post processing.

1 Derivative Based Operators

At the basis of all derivative based operators is the following observation: edges
appear as maxima of the first derivative and as zero crossings of the second derivative
(Figure 1).

We now look at the approximation and application of derivatives to images.

1.1 Derivative Estimation

A derivative of a function f(x) is given by:

df

dx
= lim

h→0

f(x+ h)− f(x)

h
(1)

An image is a bivariate function I(x, y) and we want to estimate the partial derivative

1

(G J H �

) L U V W � G H U L Y D W L Y H �

6 H F R Q G � G H U L Y D W L Y H �

Figure 1: Original edge and its derivatives.

in the x and y directions. This is done using a discrete approximation of Equation 1:

∂
∂x

= -1 1 ∂
∂y

=
-1
1

Unfortunately this operator does not give the approximation for the same point in
space in the x and y directions. In the x direction the approximation is for the point
(x+ 0.5, y) while for the y direction it is for the point (x, y + 0.5)

The solution to this problem is to use the following approximation:

∂
∂x

=
-1 1
-1 1

∂
∂y

=
-1 -1
1 1

which approximates the derivative at the location (x+0.5, y+0.5). A similar approx-
imation is given by the Roberts differentiation kernel (Figure 2). The only difference

2

is that the approximation is not along the x, y axis. Convolving the image with
these partial derivative operators yields the image derivative. Unfortunately images
contain noise and these operators are sensitive to noise, giving the same response to
noise and signal. A standard solution to this problem is to smooth the image prior
to differentiation yielding the following equations:

∂I
∂x

= M ∂
∂x

∗ S ∗ I

∂I
∂y

= M ∂
∂y

∗ S ∗ I

where S is a smoothing kernel and M ∂
∂x
,M ∂

∂y
differentiation kernels in the x and y

directions.

Two operators which apply this approach are the Prewitt and Sobel operators Fig-
ures 3 and 4 respectively. Where the Prewitt smoothing kernel is

1 1 1

and the Sobel smoothing kernel is

1 2 1

Both operators use the following difference operator for differentiation:

-1 0 1

Gradient direction is given by the partial derivatives ∂I(x,y)
∂x

, ∂I(x,y)
∂y

:

θ = arctan(
∂I(x, y)

∂y
,
∂I(x, y)

∂x
)

Gradient magnitude is usually computed with one of the following formula:

magnitude =

∣∣∣∣∣∂I(x, y)∂y

∣∣∣∣∣+
∣∣∣∣∣∂I(x, y)∂x

∣∣∣∣∣
magnitude =

(
∂I(x, y)

∂y

)2

+

(
∂I(x, y)

∂x

)2

magnitude =

√√√√(∂I(x, y)
∂y

)2

+

(
∂I(x, y)

∂x

)2

3

∂
∂x

∂
∂y

1 0
0 -1

0 -1
1 0

Figure 2: Roberts gradient estimation operator.

∂
∂x

∂
∂y

-1 0 1
-1 0 1
-1 0 1

-1 -1 -1
0 0 0
1 1 1

Figure 3: Prewitt gradient estimation operator.

∂
∂x

∂
∂y

-1 0 1
-2 0 2
-1 0 1

-1 -2 -1
0 0 0
1 2 1

Figure 4: Sobel gradient estimation operator.

1.2 Canny Edge Detector

This edge detector is due to J.F. Canny [2] (a recursive implementation of this algo-
rithm was presented in [4]).

In his work Canny specified several criteria for the performance of edge detectors:

1. Minimum number of false negatives and false positives.

2. Good localization, report edge location at correct position.

3. Single response to single edge.

Solving an optimization problem using variational calculus and the criteria specified
above he arrived at an optimal edge enhancing filter, the derivative of a Gaussian

G(x, y) = e−
x2+y2

2σ2 :
∂G
∂x

= − x
σ2G

∂G
∂y

= − y
σ2G

Further attributes of the Gaussian and its derivatives can be found in the appendix
of this lecture.

4

Canny Edge Detection

1. Convolve the image with the derivative of a Gaussian.

2. Apply non maxima suppression to the gradient magnitude image.

3. Use two thresholds τ1 > τ2:

(a) class =

{
edge if magnitude > τ1
candidate if magnitude > τ2

(b) Hysteresis: Any candidate which is a neighbor, in the direction perpendic-
ular to the gradient, of an edge is reclassified as an edge.

Table 1: Canny Edge Detector

The steps of the edge detection process are as follows (summary in Table 1):

Start by convolving the image with the derivatives of a Gaussian mask. The result
is a magnitude image with maxima at edge locations. Unfortunately this image may
contain broad ridges at edge locations, which brings us to the next step.

Non maxima suppression is the process of thinning these ridges. At each pixel check
if it is a local maxima in the gradient direction, if it is then retain it, otherwise
change the magnitude to zero. The magnitude along the gradient direction is usually
computed using linear interpolation as shown in Figure 5.

The third and final step of the algorithm uses a double thresholding scheme. A high
threshold τ1 is selected such that all pixels with gradient magnitude greater than τ1
are classified as edge elements (edgels). A second threshold τ2 < τ1 is selected and all
pixels with gradient magnitude greater than τ2 are classified as candidate edgels. Now
reclassify the candidates, if a candidate’s neighbor in the direction perpendicular to
the gradient is an edgel then the candidate is reclassified as an edgel too. Note that in
higher dimensions there are an infinite number of directions that are perpendicular to
the gradient direction. Consequentially, we look at all neighbors. This reclassification
is usually referred to as hysteresis 1

1.2.1 Sub-Pixel Location Estimation

The approach described in this subsection is due to [3] (this is a standard approach
for locating a local extremum).

Once a pixel is determined as an edge we look at the original gradient magnitude data.
Again we have three magnitude values as shown in Figure 5. We will fit a parabola to

1Hysteresis: The phenomenon exhibited by a system, often a ferromagnetic or imperfectly elastic
material, in which the reaction of the system to changes is dependent upon its past reactions to
change (Websters Encyclopedic Unabridged Dictionary).

5

Y�

Y�

Y�

$� $� $�

$�

$�$�$�

$�

Figure 5: Non Maximal Suppression. The pixel with gradient magnitude v2 is retained
only if v2 > v1 and v2 > v3. The values at v1 and v3 are computed using linear
interpolation between neighboring pixels.

these values and find its maxima which is our sub pixel estimate for the edge location.
Given three points (−1, v1), (0, v2), (1, v3) we want to fit a parabola, f(x) = a1x

2 + a2x+ a3,
through these points. Solving the following three equations yields the unknown coef-
ficients:

a1 − a2 + a3 = v1
a3 = v2
a1 + a2 + a3 = v3

The maximum of the parabola is given for:

f ′(x) = 0, xmax = − a2
2a1

Substituting the computed coefficients into the equation above yields:

xmax =
v1 − v3

2(v1 + v3 − 2v2)

which is the distance along the gradient direction in which the edge is located.

1.3 Caveats

Algorithms which smooth the image prior to differentiation will cause errors in edge
location. More smoothing means that detected edges will be farther away from their
actual location.

6

(a) (b)

Figure 6: (a) Original and (b) result of Canny edge detector (’edge’ function in
matlab) marked in black.

Algorithms which apply non maxima suppression rely on the gradient direction for this
operation. When smoothing is applied to contours with high curvature the gradient
direction is usually not correct. At corners this will usually yield wrong directions.
This is the reason why the Canny edge detector gives broken edges at T-junctions as
shown in Figure 6.

1.4 Marr-Hildreth (LoG) Edge Detector

LoG Edge Detection

1. Convolve the image with the Laplacian of a Gaussian.

2. Find zero crossings. Usually there will not be pixels whose value is zero. Given
a pixel with value v1 look at its neighbors. If there is a neighbor with value v2
such that v1v2 < 0 then if |v1| < |v2| mark the pixel as an edge.

Table 2: LoG Edge Detector

At the beginning of this section we saw that edges correspond to maxima of the first
derivative and zero crossings of the second derivative. The edge detector described
in this subsection is based on the later observation and is due to [7].

7

The algorithm applies a smoothing filter, a Gaussian, to the original image, computes
the laplacian of the smoothed image and searches for zero crossings in it. The laplacian
of a bivariate function I(x, y) is given by:

∇2I =
∂2I

∂x2
+

∂2I

∂y2

0
10

20
30

40
50

60
70

0

20

40

60

80
−20

−15

−10

−5

0

5

x 10
−3

Figure 7: Two dimensional laplacian of Gaussian.

The output of the Laplacian of Gaussian (LoG), operator on the image I(x, y) using

Gaussian G(x, y) = e−
x2+y2

2σ2 is given by:

LoG(I(x, y)) = ∇2[G(x, y) ∗ I(x, y)]
⇓

LoG(I(x, y)) = [∇2G(x, y)] ∗ I(x, y)
⇓

LoG(I(x, y)) = [
(
x2+y2−2σ2

σ4

)
e−

x2+y2

2σ2] ∗ I(x, y)

The image LoG(I(x, y)) is searched for zero crossings which are rarely located at pixel
locations. What we search for are pixels with different signs and the edge is located
between them. Using linear interpolation between two such pixels yields the edge
location with sub pixel accuracy.

The LoG operator can be approximated using the following mask:

0 1 0
1 -4 1
0 1 0

An important thing to note is that with the LoG operator no directional data is
available. This should be kept in mind if the higher level algorithms which receive
the output of the edge detection require edge direction.

8

SUSAN Edge Detection

1. For each pixel do:

(a) Calculate the USAN (Equation 2).

(b) Calculate edge response according to Equation 3.

2. Apply non maxima suppression to the edge response image (using moment
calculations on the USAN).

3. Apply thinning (post processing).

Table 3: SUSAN Edge Detector

2 The SUSAN edge detector

This edge detector is a non derivative based operator due to S.M. Smith [9] 2.

SUSAN stands for “Smallest Univalue Segment Assimilating Nucleus”. The idea
behind this detector is to use a pixel’s similarity to its neighbors gray values as the
classification criteria (a non linear filter). In Figure 8 we see that the area of the USAN
contains the information about the image structure around a given point which allows
classification. The area of the USAN is at a maximum in a flat region, falls to half
near a straight edge and falls further when the mask is placed near a corner.

Figure 8: Univalue Segment Assimilating Nucleus (USAN). Circular masks placed at
different locations of an image containing a single rectangle. The USAN of each mask
is marked in dark color. The nucleus of the masks are marked with a +.

2This detector is patented (UK Patent 2272285)

9

The steps of the edge detection are as follows (summary in Table 3):

At each pixel place a circular mask and compute the weight of the USAN. The weight
of the USAN is:

n(r0) =
∑
r

compare(r, r0) (2)

where compare(r, r0) was originally defined as:

compare(r, ro) =

{
1 if |I(r)− I(r0)| ≤ t
0 if |I(r)− I(r0)| > t

with t a threshold defining pixel gray level similarity. The comparison function actu-
ally used is a “smoother” version of the original:

compare(r, r0) = e−(
I(r)−I(r0)

t
)6

Compute the edge strength at the pixel using the following formula:

response(ro) =

{
g − n(r0) if n(r0) < g
0 otherwise

(3)

with g a geometric threshold which is set to 3
4
nmax (proof of optimality of this thresh-

old can be found in [9]).

Having computed the edge response image we now perform non maxima suppression
(NMS). NMS requires the direction perpendicular to the edge. The direction depends
on the edge type which is being examined either inter-pixel (edge is between pixels)
or intra-pixel (pixel itself is part of the edge).

Inter pixel case, if the USAN area is greater than the mask diameter and the center of
gravity of the USAN lies more than one pixel from the nucleus. The center of gravity
of the USAN is defined as:

CG(r0) =

∑
r r compare(r, r0)∑
r compare(r, r0)

The direction we want is given by (r0 − CG(r0).

Intra pixel case, if the USAN area is smaller than the mask diameter or the USAN
center of gravity lies less than one pixel from the nucleus. Compute the second order
moments of the USAN about the nucleus (r0 = (x0, y0)):

(x− x0)2) =
∑

r(x− x0)
2compare(r, r0)

(y − y0)2) =
∑

r(y − y0)
2compare(r, r0)

Edge orientation is given by (y−y0)2)

(x−x0)2)
.

A nice attribute of the SUSAN edge detector is that it can handle T-junctions well
(Figure 9) as it does not rely on gradient direction for NMS which was a problem
with the Canny detector (Figure 6).

10

(a) (b)

Figure 9: (a) Original and (b) result of SUSAN edge detector marked in black.

3 Post Processing

Many implementations of edge detectors apply post processing steps to remove noise
and thin edges.

Thining is usually done with morphological operators which are not discussed here.
This post processing seems unnecasery if the operator includes a non maxima sup-
presion (NMS) step, but in practice NMS does not always remove multiple responses
to the same edge, due to inaccuracies in gradient direction.

Another heuristic is to remove small connected components which are assumed to
be the result of noise in the image. The definition of small is vague, remaining an
implementation issue.

11

(a) (b)

(c) (d)

Figure 10: (a) Original (b) result of Canny edge detector with σ = 3 (c) result of
LoG edge detector with σ = 3 (d) result of SUSAN edge detector

12

A The Gaussain Kernel

A common smoothing kernel is the zero mean Gaussian which is given by the following
equation:

G(x, y) = e
−(x2+y2)

2σ2

This kernel has several nice attributes:

• Rotational symmetry. For unisotropic smoothing use a Gaussian kernel with
different standard deviations in the x and y directions.

• Its Fourier transform is also a Gaussian.

• Seperability.

The seperability leads to faster convolution using two 1D kernels:

G(x, y) ∗ I(x, y) =
∑m

i=1

∑n
j=1G(i, j)I(x− i, y − j)

=
∑m

i=1

∑n
j=1 e

−(i2+j2)

2σ2 I(x− i, y − j)

=
∑m

i=1 e
−i2

2σ2 [
∑n

j=1 e
−j2

2σ2 I(x− i, y − j)]

= G(x) ∗G(y) ∗ I(x, y)

Approximating the Gaussian:

A good approximation to a Gaussian is given by the coefficients of the binomial
expansion:

(1 + x)n =

(
n

0

)
+

(
n

1

)
x+

(
n

2

)
x2 + · · ·+

(
n

n

)
xn

This gives Pascal’s Triangle:

1
1 1

1 2 1
1 3 3 1

Convolution with a Gaussian is separable so we can use rows from Pascal’s triangle
as smoothing kernels, for example: 1

2
1

 ∗ [1 2 1
]
∗ I(x, y)

13

This approach is not always directly applicable as the binomial coefficients may be too
large for representation on the computer. The same effect is achieved by repeatedly
convolving with smaller filters.

Gaussian smoothing and image differentiation:
The following formula describes the use of Guassian smoothing prior to differentiation
in the x direction (symmetric for the y direction):

∂
∂x
(G(x, y) ∗ I(x, y)) = (∂G(x,y)

∂x
) ∗ I(x, y)

= (− x
σ2G(x, y)) ∗ I(x, y)

= − x
σ2G(x) ∗G(y) ∗ I(x, y)

= dG(x)
dx

∗G(y) ∗ I(x, y)

References

[1] Bowyer K.W., Kranenburg C., Dougherty S. “Edge Detector Evaluation Us-
ing Empirical ROC Curves” IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 354-359, 1999.

[2] Canny J.F., “A computational approach to edge detection”, IEEE Transactions
on Pattern Analysis and Machine Intelligence (IEEE TPAMI), Vol. 8(6), pp. 769–
798, 1986.

[3] Devernay F., “A Non-Maxima Suppression Method for Edge Detection with Sub-
Pixel Accuracy”, Research report 2724, INRIA Sophia-Antipolis, 1995.

[4] Deriche R., “Using canny’s criteria to derive a recursively implemented optimal
edge detector”, International Journal of Computer Vision (IJCV), Vol. 1(2), pp.
167–187, 1987.

[5] Heath M., Sarkar S., Sanocki T., Bowyer K.W. “A Robust Visual Method for
Assessing the Relative Performance of Edge Detection Algorithms”, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence (TPAMI), Vol.19(12), pp.
1338-1359, 1997.

[6] Jain R., Kasturi R., and Schunk B.G., Machine Vision, McGraw-Hill, 1995.

[7] Marr D., Hildreth E., ”Theory of Edge Detection”, Proceedings of Royal Society
of London, Vol. 207, pp. 187–217, 1980.

[8] Shin M., Goldgof D., Bowyer K.W., “An Objective Comparison Methodology of
Edge Detection Algorithms for Structure from Motion Task”, IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 190-195, 1998.

[9] Smith S.M., Brady J.M., “SUSAN - a new approach to low level image processing”,
International Journal of Computer Vision (IJCV), Vol. 23(1), pp. 45–78, 1997.

14

