
Exercise 1: Cone-Beam CT (CBCT)
Simulator

Instructor: Ziv Yaniv (zivy@gwu.edu)
Due date: Feb. 16 2012

In this exercise you will implement a CBCT simulator. The program can be written
either in C++ or using MATLAB. You receive three pieces of information which
comprise our data set:

1. Projection images in DICOM format and in the Insight Segmentation and Reg-
istration Toolkit (ITK) meta image format1.

2. The reconstructed volume in DICOM format and in the Insight Segmentation
and Registration Toolkit (ITK) meta image format.

3. A text file containing the projection matrices associated with each of the pro-
jection images.

You will implement the following two programs:

1. CBCTGenerateProjections - receives a volume and generates the projection
images from a rotation.

2. CBCTReconstruct - receives a set of projection images and reconstructs a vol-
ume using the SART algorithm discussed in class.

You will also generate an additional volume and corresponding projection images,
all in meta image format. The volume should span the same spatial extent as that
provided to you. The content of the volume is up to you. The simplest acceptable
volume contains a single sphere centered at an arbitrary location.

Submission:

1. Report in pdf format describing your code, identifying bottlenecks in the im-
plementation and any modifications you implemented to improve the compu-
tational complexity. Report should also include pictures of results generated
by your two programs and pictures of the new volume and projection data you

1http://www.itk.org/Wiki/MetaIO/Documentation

1



created. Also, provide the normalized correlation coefficient between your re-
construction and the original volume, both for the data I provided and the data
you provide.

2. Your source code and instructions on how to compile (C++) and how to run
(C++ and MATLAB implementations).

3. Your volume and projection images.

Words of caution:

• Developing the programs using data at full resolution is extremely time con-
suming due to the computational complexity of the algorithms - sub-sample
and then sub-sample some more.

• Use the ITK-SNAP (http://www.itksnap.org) program as a viewer for visual
debugging.

2


