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Abstract. Segmentation of the left ventricle and quantification of var-
ious cardiac contractile functions is crucial for the timely diagnosis and
treatment of cardiovascular diseases. Traditionally, the two tasks have
been tackled independently. Here we propose a convolutional neural net-
work based multi-task learning approach to perform both tasks simulta-
neously, such that, the network learns better representation of the data
with improved generalization performance. Probabilistic formulation of
the problem enables learning the task uncertainties during the train-
ing, which are used to automatically compute the weights for the tasks.
We performed a five fold cross-validation of the myocardium segmen-
tation obtained from the proposed multi-task network on 97 patient
4-dimensional cardiac cine-MRI datasets available through the STA-
COM LV segmentation challenge against the provided gold-standard
myocardium segmentation, obtaining a Dice overlap of 0.849 ± 0.036
and mean surface distance of 0.274 ± 0.083 mm, while simultaneously
estimating the myocardial area with mean absolute difference error of
205 ± 198 mm2.

1 Introduction

Magnetic Resonance Imaging (MRI) is the preferred imaging modality for non-
invasive assessment of cardiac performance, thanks to its lack of ionizing radia-
tion, good soft tissue contrast, and high image quality. Cardiac contractile func-
tion parameters such as systolic and diastolic volumes, ejection fraction, and
myocardium mass are good indicators of cardiac health, representing reliable
diagnostic value. Segmentation of the left ventricle (LV) allows us to compute
these cardiac parameters, and also to generate high quality anatomical models
for surgical planning, guidance, and regional analysis of the heart. Although
manual delineation of the ventricle is considered as the gold-standard, it is time
consuming and highly susceptible to inter- and intra-observer variability. Hence,
there is a need for fast, robust, and accurate semi- or fully-automatic segmenta-
tion algorithms.
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Cardiac MR image segmentation techniques can be broadly classified into: (1)
no-prior based methods, such as thresholding, edge-detection and linking, and
region growing; (2) weak-prior based methods, such as active contours (snakes),
level-set, and graph-theoretical models; (3) strong-prior based methods, such as
active shape and appearance models, and atlas-based models; and (4) machine
learning based methods, such as per pixel classification and convolutional neural
network (CNN) based models. A comprehensive review of various cardiac MR
image segmentation techniques can be found in [1].

Recent success of deep learning techniques [2] in high level computer vision,
speech recognition, and natural language processing applications has motivated
their use in medical image analysis. Although the early adoption of deep learning
in medical image analysis encountered various challenges, such as the limited
availability of medical imaging data and associated costly manual annotation,
those challenges were circumvented by patch-based training, data augmentation,
and transfer learning techniques [3,4].

Long et al. [5] were the first to propose a fully convolutional network
(FCN) for semantic image segmentation by adapting the contemporary clas-
sification networks fine-tuned for the segmentation task, obtaining state-of-the-
art results. Several modifications to the FCN architecture and various post-
processing schemes have been proposed to improve the semantic segmentation
results as summarized in [6]. Notably, the U-Net architecture [7] with data aug-
mentation has been very successful in medical image segmentation.

While segmentation indirectly enables the computation of various cardiac
indices, direct estimation of these quantities from low-dimensional representation
of the image have also been proposed in the literature [8–10]. However, these
methods are less interpretable and the correctness of the produced output is
often unverifiable, potentially limiting their clinical adoption.

Here we propose a CNN based multi-task learning approach to perform both
LV segmentation and cardiac indices estimation simultaneously, such that these
related tasks regularize the network, hence improving the network generaliza-
tion performance. Furthermore, our method increases the interpretablity of the
output cardiac indices, as the clinicians can infer its correctness based on the
quality of produced segmentation result.

2 Methodology

Traditionally, the segmentation of the LV and quantification of the cardiac
indices have been performed independently. However, due to a close relation
between the two tasks, we identified that learning a CNN model to perform
both tasks simultaneously is beneficial in two ways: (1) it forces the network
to learn features important for both tasks, hence, reducing the chances of over-
fitting to a specific task, improving generalization; (2) the segmentation results
can be used as a proxy to identify the reliability of the obtained cardiac indices,
and also to perform regional cardiac analysis and surgical planning.
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2.1 Data Preprocessing and Augmentation

This study employed 97 de-identified cardiac MRI image datasets from patients
suffering from myocardial infarction and impaired LV contraction available as
a part of the STACOM Cardiac Atlas Segmentation Challenge project [11,12]
database1. Cine-MRI images in short-axis and long-axis views are available for
each case. The semi-automated myocardium segmentation provided with the
dataset served as gold-standard for assessing the proposed segmentation tech-
nique. The dataset was divided into 80% training and 20% testing for five-fold
cross-validation.

The physical pixel spacing in the short-axis images ranged from 0.7031 to
2.0833 mm. We used SimpleITK [13] to resample all images to the most common
spacing of 1.5625 mm along both x- and y-axis. The resampled images were center
cropped or zero padded to a common resolution of 192 × 192 pixels. We applied
two transformations, obtained from the combination of random rotation and
translation (by maximum of half the image size along x- and y-axis), to each
training image for data augmentation.

2.2 Multi-task Learning Using Uncertainty to Weigh Losses

We estimate the task-dependent uncertainty [14] for both myocardium segmenta-
tion and myocardium area regression via probabilistic modeling. The weights for
each task are determined automatically based on the task uncertainties learned
during the training [15].

For a neural network with weights W, let fW(x) be the output for the
corresponding input x. We model the likelihood for segmentation task as the
squashed and scaled version of the model output through a softmax function:

p(y|fW(x), σ) = Softmax
(

1
σ2

fW(x)
)

(1)

where, σ is a positive scalar, equivalent to the temperature, for the defined
Gibbs/Boltzmann distribution. The magnitude of σ determines the uniformity of
the discrete distribution, and hence relates to the uncertainty of the prediction.
The log-likelihood for the segmentation task can be written as:

log p(y = c|fW(x), σ) =
1
σ2

fW
c (x) − log

∑
c′

exp
(

1
σ2

fW
c′ (x)

)
(2)

where fW
c (x) is the c’th element of the vector fW(x).

Similarly, for the regression task we define our likelihood as a Lapacian dis-
tribution with its mean given by the neural network output:

p(y|fW(x), σ) =
1
2σ

exp
(

−|y − fW(x)|
σ

)
(3)

1 http://www.cardiacatlas.org.

http://www.cardiacatlas.org
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The log-likelihood for regression task can be written as:

log p(y|fW(x), σ) ∝ − 1
σ

|y − fW(x)| − logσ (4)

where σ is the neural networks observation noise parameter—capturing the noise
in the output.

For a network with two outputs: continuous output y1 modeled with a Lapla-
cian likelihood, and a discrete output y2 modeled with a softmax likelihood, the
joint loss L(W, σ1, σ2) is given by:

L(W, σ1, σ2) = −log p(y1,y2 = c|fW(x))

= −log
(
p(y1|fW(x), σ1) · p(y2 = c|fW(x), σ2)

)
≈ 1

σ1
L1(W) +

1
σ2
2

L2(W) + logσ1 + logσ2

(5)

where L1(W) = |y1 − fW(x)| is the mean absolute distance (MAD) loss of y1

and L2(W) = −log Softmax(y2, fW(x)) is the cross-entropy loss of y2. To arrive
at (5), the two tasks are assumed independent and simplifying assumptions have
been made for the softmax likelihood, resulting in a simple optimization objective
with improved empirical results [15]. During the training, the joint likelihood loss
L(W, σ1, σ2) is optimized with respect to W as well as σ1, σ2.

As observed in (5), the uncertainties (σ1, σ2) learned during the training
are weighting the losses for individual tasks, such that, the task with higher
uncertainty is weighted less and vice versa. Furthermore, the uncertainties can’t
become too large, as they are penalized by the last two terms in (5).

2.3 Network Architecture

In this work, we adapt the U-Net architecture [7], highly successful in medical
image segmentation, to perform an additional task of myocardium area estima-
tion as shown in Fig. 1. The segmentation and regression paths are split at the
final up-sampling and concatenation layer. The final feature map in the seg-
mentation path is passed through a sigmoid layer to obtain a per-pixel image
segmentation. Similarly, the regression output is obtained by down-sampling the
final feature map in the regression path by 1/4th of its size and passing it through
a fully-connected layer. The logarithm of the task uncertainties (logσ1, logσ2)
added as the network parameters are used to construct the loss function (5),
and are learned during the training. Note that we train the network to predict
the log uncertainty s = log(σ) due to its numerical stability and the positivity
constraint imposed on the computed uncertainty via exponentiation, σ = exp(s).
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3 Results

The network was initialized with the Kaiming uniform [16] initializer and trained
for 50 epochs using RMS prop optimizer with a learning rate of 0.001 (decayed
by 0.95 every epoch) in PyTorch2. The best performing network, in terms of the
Dice overlap between the obtained and gold-standard segmentation, in the test
set, was saved and used for evaluation.

The network training required 9 min per epoch on average using a 12GB Nvidia
Titan Xp GPU. It takes 0.663 milliseconds on average to process a slice during
testing. The log uncertainties learned for the segmentation and regression tasks
during training are −3.9 and 3.45, respectively, which correspond to weighting the
cross-entropy and mean absolute difference (MAD) loss by a ratio of 1556:1. Note
that the scale for cross-entropy loss is 10−2, whereas that for MAD loss is 102.
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Fig. 1. Modified U-Net architecture for multi-task learning. The segmentation and
regression tasks are split at the final up-sampling and concatenation layer. The final
feature map in the segmentation path is passed through a sigmoid layer to obtain a
per-pixel image segmentation. Similarly, the final feature map in the regression path is
down-sampled (by max-pooling) to 1/4th of its size and fed to a fully-connected layer
to generate a single regression output. The logarithm of the task uncertainties (logσ1,
logσ2) are set as network parameters and are encoded in the loss function (5), hence
learned during the training.

2 https://github.com/pytorch/pytorch.

https://github.com/pytorch/pytorch
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Table 1. Evaluation of the segmentation results obtained from the baseline U-Net
(UNet) architecture and the proposed multi-task network (MTN) against the provided
gold-standard myocardium segmentation using—Dice Index, Jaccard Index, Mean Sur-
face Distance, and Hausdorff Distance.

Assessment metric End-diastole End-systole All phases

UNet MTN UNet MTN UNet MTN

Dice Index 0.836 ±
0.036

0.837±
0.038

0.850±
0.033

0.849 ±
0.036

0.847 ±
0.035

0.849±
0.036

Jaccard Index 0.719 ±
0.052

0.721±
0.054

0.740±
0.048

0.739 ±
0.053

0.736 ±
0.050

0.739±
0.053

Mean surface distance (mm) 0.318 ±
0.089

0.286±
0.087

0.299 ±
0.095

0.274±
0.090

0.305 ±
0.088

0.274±
0.083

Hausdorff distance (mm) 13.582±
4.337

13.364±
4.108

13.083±
3.630

13.355±
3.861

13.211±
4.212

13.233±
3.810

The 2D segmentation results are stacked to form a 3D volume, and the largest
connected component is selected as the final myocardium segmentation. The
myocardium segmentation obtained for end-diastole, end-systole, and all cardiac
phases from the proposed multi-task network (MTN) and from the baseline U-
Net architecture (without the regression task) are both assessed against the gold-
standard segmentation provided with the dataset as part of the challenge, using
four traditionally employed segmentation metrics—Dice Index, Jaccard Index,

Fig. 2. Mean and 99% confidence interval for (a) dice coefficient, (b) Jaccard coefficient,
(c) Mean surface distance (mm), and (d) Hausdorff distance (mm), for baseline U-Net
and the proposed MTN architecture across all cardiac phases. Confidence interval is
obtained based on 1000 bootstrap re-sampling with replacement for 2191 test volumes
across five-fold cross-validation.
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Fig. 3. The myocardium area computed from (A) regression path of the proposed
multi-task network, (B) segmentation obtained from the proposed multi-task network,
(C) segmentation obtained from the baseline U-Net model, plotted against the corre-
sponding myocardium area obtained from the provided gold-standard segmentation for
all cardiac phases. The best fit line is shown in each plot. The correlation coefficients
for A, B, and C are 0.9466, 0.9565, 0.9518, respectively

Mean surface distance (MSD), and Hausdorff distance (HD)—summarized in
Table 1. Note that the myocardium dice coefficient is higher for end-systole phase
where the myocardium is thickest.

The Kolmogorov-Smirnov test shows that the difference in distributions for
Dice, Jaccard and MSD metrics between the proposed multi-task network and
baseline U-Net architecture are statistically significant with p-values: 2.156e−4,
2.156e−4, and 6.950e−34, respectively. However, since the segmentation is eval-
uated on a large sample of 2191 volumes across five-fold cross validation, the
p-values quickly go to zero even for slight difference in distributions being

Table 2. Mean absolute difference (MAD), in mm2, between the myocardium area
obtained from the provided gold-standard segmentation and the results computed from:
(a) the regression path of the proposed multi-task network, (b) segmentation obtained
from the proposed multi-task network, and (c) segmentation obtained from the baseline
U-Net model, for end-diastole, end-systole, and all cardiac phases, sub-divided into
apical, mid, and basal regions of the heart.

Cardiac regions End-diastole End-systole All phases

Reg-
MTN

Seg-
MTN

Seg-
UNet

Reg-
MTN

Seg-
MTN

Seg-
UNet

Reg-
MTN

Seg-
MTN

Seg-
UNet

All 201 ±
199

174±
209

203 ±
221

211 ±
209

173±
203

187 ±
204

206 ±
198

170±
199

193 ±
208

Apical 185±
180

187 ±
204

194 ±
186

193 ±
199

190 ±
226

185±
185

184 ±
183

181±
210

187 ±
189

Mid 190 ±
172

141±
132

179 ±
142

228 ±
194

160±
151

174 ±
135

212 ±
178

149±
132

176 ±
141

Basal 250±
269

252 ±
331

282 ±
368

193 ±
241

186±
267

216 ±
312

213 ±
248

210±
289

237 ±
319
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(a) Box-plot for the mean absolute difference (MAD).

(b) Mean and 99% confidence interval for the mean absolute difference (MAD).

Fig. 4. (a) Box-plot (outliers removed for clarity) and (b) Mean and 99% confi-
dence interval, for the mean absolute difference (MAD) between the myocardium area
obtained from the provided gold-standard segmentation and the results obtained from:
(1) the regression path of the proposed multi-task network, (2) segmentation obtained
from the proposed multi-task network, and (3) segmentation obtained from the baseline
U-Net model. Confidence intervals are obtained based on 1000 bootstrap re-sampling
with replacement.
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compared, representing no practical significance [17]. Hence, we computed the
99% confidence interval for the mean value of each segmentation metric based
on 1000 bootstrap re-sampling with replacement, as shown in Fig. 2. As evident
from Fig. 2, Dice, Jaccard and HD metrics are statistically similar, whereas the
reduction in MSD for the proposed multi-task network compared to the baseline
U-Net architecture is statistically significant.

In addition to obtaining the myocardium area from the regression path of
the proposed network, it can also be computed indirectly from the obtained
myocardium segmentation. Hence, we compute and evaluate the myocardium
area estimated from three different sources: (a) regression path of the MTN, (b)
segmentation obtained from the MTN, and (c) segmentation obtained from the
baseline U-Net model. Figure 3 shows the myocardium area obtained from these
three methods for all phases of the cardiac cycle plotted against the ground-truth
myocardium area estimated from the gold-standard myocardium segmentation
provided as part of the challenge data. We can observe a linear relationship
between the computed and gold-standard myocardium areas, and the corre-
sponding correlation coefficients for the methods (a), (b), and (c) are 0.9466,
0.9565, 0.9518, respectively.

Further, we computed the MAD between the ground-truth myocardium area
and the area estimated by each of the three methods for end-diastole, end-systole,
and all cardiac phases (for 26664 slices across five-fold cross validation). For the
regional analysis, slices in the ground-truth segmentation after excluding two api-
cal and two basal slices are considered as mid-slices. Table 2 summarizes the mean
and standard deviation for the computed MADs. Box-plots (outliers removed for
clarity) comparing the three methods for different regions of the heart through-
out the cardiac cycle are shown in Fig. 4a. The MAD in myocardium area esti-
mation of 206 ± 198mm2 obtained from the regression output of the proposed
method is similar to the results presented in [9]: 223 ± 193mm2, while acknowl-
edging the limitation that the study in [9] was conducted on a different dataset
than our study. Moreover, while the regression output of the proposed network
yields good estimate of the myocardial area, the box-plot in Fig. 4a suggests
that even further improved myocardial area estimates can be obtained from a
segmentation based method, provided that the quality of the segmentation is
good.

Lastly, we computed the 99% confidence interval for the mean value of
myocardium area MAD based on 1000 bootstrap re-sampling with replacement,
as shown in Fig. 4b. This confirms that the myocardium area estimated from the
segmentation output of the proposed multi-task network is significantly better
than that obtained from the regression output, however, there is no statistical
significance between other methods. Furthermore, we can observe the variability
in MAD is highest for the basal slices, followed by apical and mid slices.
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4 Discussion, Conclusion, and Future Work

We presented a multi-task learning approach to simultaneously segment and
quantify myocardial area. We adapt the U-Net architecture, highly successful
in medical image segmentation, to perform an additional regression task. The
best location to incorporate the regression path into the network is a hyper-
parameter, tuned empirically. We found that adding the regression path in the
bottleneck or intermediate decoder layers is detrimental for the segmentation
performance of the network, likely due to high influence of the skip connections
in the U-Net architecture.

Myocardium area estimates obtained from the regression path of the pro-
posed network are similar to the direct estimation-based results found in the lit-
erature. However, our experiments suggest that segmentation-based myocardium
area estimation is superior to that obtained from a direct estimation-based
method. Lastly, the myocardium segmentation obtained from our method is
at least as good as the segmentation obtained from the baseline U-Net model.

To test the generalization performance of the proposed multi-task network,
we plan to evaluate the network performance using a lower number of train-
ing images. Similarly, we plan to extend this work to segment left ventricle
myocardium, blood-pool, and right ventricle, and regress their corresponding
areas using the Automated Cardiac Diagnosis Challenge (ACDC)3 2017 dataset.
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J.G.: A review on deep learning techniques applied to semantic segmentation.
CoRR abs/1704.06857 (2017)

7. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomed-
ical image segmentation. CoRR abs/1505.04597 (2015)

3 https://www.creatis.insa-lyon.fr/Challenge/acdc/.

https://www.creatis.insa-lyon.fr/Challenge/acdc/


LV Segmentation and Quantification via Multi-task Learning 31

8. Zhen, X., Islam, A., Bhaduri, M., Chan, I., Li, S.: Direct and simultaneous four-
chamber volume estimation by multi-output regression. In: Navab, N., Hornegger,
J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 669–676.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24553-9 82

9. Xue, W., Islam, A., Bhaduri, M., Li, S.: Direct multitype cardiac indices estimation
via joint representation and regression learning. IEEE Trans. Med. Imaging 36(10),
2057–2067 (2017)

10. Xue, W., Brahm, G., Pandey, S., Leung, S., Li, S.: Full left ventricle quantification
via deep multitask relationships learning. Med. Image Anal. 43, 54–65 (2018)

11. Fonseca, C.G., et al.: The cardiac atlas project - an imaging database for com-
putational modeling and statistical atlases of the heart. Bioinformatics 27(16),
2288–2295 (2011)

12. Suinesiaputra, A., et al.: A collaborative resource to build consensus for automated
left ventricular segmentation of cardiac MR images. Med. Image Anal. 18(1), 50–62
(2014)

13. Yaniv, Z., Lowekamp, B.C., Johnson, H.J., Beare, R.: SimpleITK image-analysis
notebooks: a collaborative environment for education and reproducible research.
J. Digit. Imaging 31, 290–303 (2017)

14. Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning
for computer vision? In: Guyon, I., et al. (eds.) Advances in Neural Information
Processing Systems 30, pp. 5574–5584. Curran Associates, Inc. (2017)

15. Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh
losses for scene geometry and semantics. CoRR abs/1705.07115 (2017)

16. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-
level performance on imagenet classification. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pp. 1026–1034 (2015)

17. Lin, M., Lucas Jr., H.C., Shmueli, G.: Research commentary - too big to fail: large
samples and the p-value problem. Inf. Syst. Res. 24(4), 906–917 (2013)

https://doi.org/10.1007/978-3-319-24553-9_82

	Left Ventricle Segmentation and Quantification from Cardiac Cine MR Images via Multi-task Learning
	1 Introduction
	2 Methodology
	2.1 Data Preprocessing and Augmentation
	2.2 Multi-task Learning Using Uncertainty to Weigh Losses
	2.3 Network Architecture

	3 Results
	4 Discussion, Conclusion, and Future Work
	References




