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ABSTRACT 

To assess a Smart Imagery Framing and Truthing (SIFT) system in automatically labeling and annotating chest X-ray 

(CXR) images with multiple diseases as an assist to radiologists on multi-disease CXRs. SIFT system was developed by 

integrating a convolutional neural network based-augmented MaskR-CNN and a multi-layer perceptron neural network. It 

is trained with images containing 307,415 ROIs representing 69 different abnormalities and 67,071 normal CXRs. SIFT 

automatically labels ROIs with a specific type of abnormality, annotates fine-grained boundary, gives confidence score, 

and recommends other possible types of abnormality. An independent set of 178 CXRs containing 272 ROIs depicting 

five different abnormalities including pulmonary tuberculosis, pulmonary nodule, pneumonia, COVID-19, and 

fibrogenesis was used to evaluate radiologists’ performance based on three radiologists in a double-blinded study. The 

radiologist first manually annotated each ROI without SIFT. Two weeks later, the radiologist annotated the same ROIs 

with SIFT aid to generate final results. Evaluation of consistency, efficiency and accuracy for radiologists with and without 

SIFT was conducted. After using SIFT, radiologists accept 93% SIFT annotated area, and variation across annotated area 

reduce by 28.23%. Inter-observer variation improves by 25.27% on averaged IOU. The consensus true positive rate 

increases by 5.00% (p=0.16), and false positive rate decreases by 27.70% (p<0.001). The radiologist’s time to annotate 

these cases decreases by 42.30%.  Performance in labelling abnormalities statistically remains the same. Independent 

observer study showed that SIFT is a promising step toward improving the consistency and efficiency of annotation, which 

is important for improving clinical X-ray diagnostic and monitoring efficiency. 

Key Words: Chest radiograph; deep learning; image annotation; observer performance study 

 

1. INTRODUCTION 

The advancement of Deep Learning (DL) has greatly facilitated research on diagnostic radiology decision support, which 

relies on updated DL techniques, available training data, and rapidly growing computation capability1-3. Advances in 
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clinical decision support research provide achievements in different aspects, such as disease detection4-7, disease 

progression prediction8, abnormalities localization9 and workflow improvement. 

In general, to further boost the efficiency and generalization of the methods used in those clinical decision support, the 

most effective approach is to get access to large amount of high-quality image data3, 10, 11. High-quality image data requires 

accurate labelling of diseases and annotated boundary of the region of interests (ROIs). To ensure clinical generalizability 

of the model, it is desirable to have a large dataset with a variety of high-quality images from multiple institutions and 

different geographic regions12. However, cataloguing large datasets can be challenging due to their volume, limited 

radiologist availability, and time-consuming annotation processes. Collecting data for rare diseases is especially difficult. 

Additionally, many complexities are introduced in the data de-identification process to comply with patient privacy rules, 

institutional review board requirements, and local ethical committee protocols13. If training data are limited, deep learning–

based models may suffer from overfitting, which results in poor generalizability. 

Several studies work on this challenge by data collection, data annotation and label fixing. Yang et al.14 specifically 

collected database many times consists of other abnormalities.  Accurately labelling these comorbidities can increase the 

classification for deep learning. “Finer-grained annotation” (“Pixel-wise annotation”), instead of bonding box and ellipse-

wise annotation, can not only improve the performance of deep learning models, but help deep learning model extract more 

accurate information. Fixing annotation mistakes can easily lead to a 10-20% improvement of the model and is 

considerably less effort than annotating extra data from scratch. In addition, adding new data will not help the accuracy of 

the model if the existing files still contain mistakes. It requires much more additional annotated training data to the neural 

network to get a similar accuracy improvement compared to just fixing the original dataset. 

Therefore, sufficient annotation from radiologists is critical for training deep learning models to help the diagnostic 

radiology decision. However, about 25% of radiologists do not agree with other radiologists’ diagnoses, and 30% do not 

agree with their own previous decisions15. The whole procedure of data annotation is very time consuming and tedious. 

Generally, in order to use deep learning to train networks to perform either of detection and segmentation tasks, one 

requires a fair amount of annotated images that mirrors the desired output: bounding boxes in the case of detection, and 

pixel-level masks in the case of segmentation.  However, the state-of-the-art DL perform feature extraction, segmentation 

of ROI, then classification of each ROI in sequence.  Accurate and consistent segmentation in training images will warrant 

the robustness and accuracy of DL classification than bonding box16.   

There are also some open-source graphical annotation tools for radiologists including labelme and it.snap. With available 

pathology report and a suite of templates (oval, circle, square, polygon, rectangular, triangle, square), radiologists manually 

label the locations of abnormality and select the best match template and manually place template on the center of the 

labeled abnormality. Additionally, some researchers propose automated annotation tools to improve the efficiency. MarkIT 

utilizes 1000 CXR with multi-label classifications by techniques of AI and blockchain to enable crowdsourcing and data 

exchange without segmentation to generate boundary. Its UI only changes brightness and contrast and the confidence is 

determined by annotators. Currently, automated annotation is less accurate than manual annotation, and therefore still 

needs expert validation to provide an error-free annotated dataset. In the existing methods, radiologists need to determine 

the center of the identified abnormalities and the best matched template. Algorithm determines the boundary of abnormality 

from the selected template in real time. Also, radiologists interact with algorithm which need to compute boundary in real-

time.  

In this work, we propose an AI-based Smart Imagery Framing and Truthing (SIFT) System which is designed to generate 

high-quality annotated cases to train machine learning and artificial intelligence. We design an experiment that the 

radiologist first manually annotated each ROI without SIFT and annotated the same ROIs with the assistance of SIFT to 

generate final results two weeks later. Evaluation of consistency, efficiency and accuracy for radiologists with and without 

SIFT was conducted. 

2. METHODOLOGY 

2.1 Material and Methods 

2.1.1. SIFT System 

Smart Imagery Framing and Truthing (SIFT) System is designed to generate high-quality annotated cases to train machine 

learning and artificial intelligence. The annotated cases are not for the diagnosis and detection of diseases by physicians. 

It can automatically label 68 different diseases and annotate their boundary locations. Fig .1 displays our developed Expert-
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Driven Fast Fine-Grainer Annotation & Training Process of SIFT system. 

SIFT consists of graphic user interface (GUI), Network Connection and AI engine. AI engine (MOM ClaSeg algorithm) 

can automatically label the abnormality, its boundary, and confidence score, and other recommended abnormality. GUI 

will display AI engine labelled/annotated abnormality and allow annotators to manually edit the AI-generated results to 

generate final annotation. And the Network Connection is DICOM PACS connection, which support the data transmission 

between SIFT system and hospitals or other databases. Using SIFT system, annotators can label different AI predicted 

diseases and edit boundary. It is fully compliant with international standard (90% MedDRA coding / ICD 13 / RedLex and 

10% Radiopaedia / PubMed). NO FDA Clearance is Needed because it is only intended to be used in research to generate 

data to train and validate the ML/AI system. 

 

Figure 1. Expert-Driven Fast Fine-Grainer Annotation & Training Process 

2.1.2 Training of AI Engine 

SIFT system was developed by integrating a convolutional neural network based-augmented MaskR-CNN and a multi-

layer perceptron neural network. It is trained with images containing 307,415 ROIs representing 69 different abnormalities 

and 67,071 normal CXRs17. It automatically labels ROIs with a specific type of abnormality, annotates fine-grained 

boundary, gives confidence score, and recommends other possible types of abnormality.  

In order to reduce the risk of overfitting and determine the optimal training epochs and connection weights to build above 

transfer learning networks, we divided the training dataset using a ratio of 0.85 to 0.15 in all different image categories 

including normal images and 65 different types of abnormalities.  Note that the term “normal image” is used to indicate 

that there is no finding in the CXR by radiologists. Thus, for each image category, 85% of CXR images are used to train 

the networks and 15% of CXR images are used to validate the network performance for different epochs and weights. 

2.1.3 Graphic User Interface 

The GUI displays AI engine labelled/annotated abnormality and confidence using Polyline annotation style, as  shown in 

Fig 2.a. SIFT only displays portion of boundary points such that it allows easier editing by annotators, which allow 

annotators to manually edit the AI-generated results to generate final annotation (Figure 2b) and allow annotators to select 

other possible abnormalities and their corresponding boundaries (Figure 2c). 
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(a)                                                        (b)                                                  (c) 

Figure. 2 Graphic User Interface 

2.1.4 Network Connection  

DICOM viewer and annotation tools were implemented, includes features for image loading, parsing, decoding, and tools 

commonly encountered in DICOM viewers. Our platform is capable of fetching images from any vendor-neutral DICOM 

storage. We implemented a connection with both standard Picture Archiving and Communication System (PACS) systems. 

The output format can be JSON, Excel, or bmp. 

2.2 Experimental Design 

As shown in Table 1, an independent set of 178 CXRs containing 272 ROIs depicting five different abnormalities including 

pulmonary tuberculosis, pulmonary nodule, pneumonia, COVID-19, and fibrogenesis was used to evaluate radiologists’ 

performance based on three radiologists in a double-blinded study. The dataset included 178 patients with 44.95% male, 

22.47% female and 32.58% unknown (average age of 47±20 years).  

Two expert radiologists with more than 30 years of experience serve as gold standard to determine the location of 

abnormality based on the pathology/diagnostic reports. Three study radiologists with 5-10 years of experience, used to 

annotate tuberculosis (TB) for several area on CXRs for at least 3 years, label the abnormality and annotate its location in 

the current study. Their observer performance and preference are studied and compared. The study radiologists first 

manually annotated each ROI without SIFT. Two weeks later, the radiologists annotated the same ROIs with SIFT aid to 

generate final results. The labelled abnormality, confidence for each abnormality (confidence score ranging from 0 to 5, 

where 0 is the lowest and 5 is the highest), boundary of labelled abnormality and labeling time for each case are recorded. 

Evaluation of consistency, efficiency and accuracy for radiologists with and without SIFT was conducted. 

Table 1. Data description of testing images and regions of interest (ROI) 

Abnormality Types Data Source No. of Images No. of ROIs 

Pulmonary tuberculosis NIAID public dataset 44 50 

Pulmonary nodule In-house 38 43 

Pneumonia In-house 31 42 

COVID-19 GGO BrixIA Public dataset 32 63 

Fibrogenesis In-house 33 74 

Total  178 272 

3. RESULTS 

3.1 Evaluation of consistency for the same Types and Same Area of Abnormalities 

 

 

Annotator edited boundary 

 

Additional  
Recommended  
Diseases 
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3.1.1 Effect of SIFT on radiologists’ decision on annotated area 

We first evaluate the effect of SIFT on radiologists’ decision on annotated pixel area. In Fig.3, it is shown the examples of 

annotated images for TB respectively from radiologist only, SIFT only, and radiologist using SIFT. It can be observed that 

radiologists changed the annotation and accepted the area resulted from SIFT after using and being assisted by SIFT. Fig. 

4 demonstrates it more obviously by compare the overlapped images. 

From the statistics (Table 2), radiologists accept 93% SIFT annotated area (93%=100% -7%). Radiologist’s variation 

(STDEV) to annotate an area reduce by 28.23% after using SIFT. Without SIFT, radiologist annotated abnormality area is 

29% larger than SIFT annotated area. 

 

Figure.3 Example of annotated images for TB with radiologist only (left), SIFT only (middle), and radiologist using SIFT (right). 

 

Figure 4. Example of overlapped images for TB with radiologist only (left), SIFT only (middle), and radiologist using SIFT (right). 

Table 2. Effect of SIFT on Radiologists’ Annotated Area 
 

Radiologists only 

(2 weeks ago) 
SIFT Only 

Radiologists with 

SIFT Aid 

(2 weeks later) 

Area Difference 
Area Difference 

(%) 

 Area (B1) Area (B2) Area (B3) B2-B1 B3-B2 B3-B1 (B2-B1)/B1 (B3-B2)/B2 

Radiologist 1 104,278,048 

72,891,095 

75,944,200 -31,386,953 3,053,105 -28,333,849 -30% 4% 

Radiologist 2 109,229,920 84,560,522 -36,338,825 11,669,427 -24,669,398 -33% 16% 

Radiologist 3 92,734,598 72,834,616 -19,843,503 -56,480 -19,899,983 -21% 0% 

Average 

Radiologist 
102,080,855 77,779,779 -29,189,760 4,888,684 -24,301,076 -29% 7% 

Standard 

Deviation 
8,464,316.28 6,074,638.38 - - -2,389,677.90 - -28.23% 
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3.1.2 Effect of SIFT on consensus area 

As shown in Fig.4, we also conduct an analysis on five abnormalities based on intersection of union (IoU) Coefficient. 

The IoU can be calculated as: 

𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑢𝑛𝑖𝑜𝑛
                (1) 

Where area of overlap and area of union are the overlapping area and union area between two times annotation respectively.  

Consensus in annotated overlapped area improves by 25.27% on average in IoU. Note according literatures15, inter-

observer variation for two radiologists can be as high as 25%. The Inter-observer variation in our study reduced by 39.62%. 

Improvement for radiologists before and after use of SIFT is the lowest for TB because these radiologists are very familiar 

with annotating TB. 

   

Figure 4.  IOU marked by two radiologists before and after SIFT.  Inter-observer variation in annotating area improves by 25.27% on 

average in IOU.  IOU improvement for radiologists before and after use of SIFT is the lowest for TB because these radiologists are very 

familiar with annotating TB. 

3.1.3 Comparison of labelled abnormalities (total ROI) 

Accuracy of labelled ROI is based on the accuracy of AI-predicted ROI in terms of its location and class of abnormality. 

Total ROI can be calculated as: 

Total ROI = TP ROI + FP ROI 

Where TP ROI and FP ROI are True Positive ROI and False Positive ROI, respectively. 

As shown in Table 3, Total ROI decreases by 6.93% after use of SIFT. Consensus ROI decreases by 3.10%. No consensus 

ROI decreases by 18.18%. The consensus true positive rate increases by 5.0% after use of SIFT (P=0.16). The consensus 

false positive rate decreases by 27.7% after use of SIFT (P<0.001).  

Table 3. Radiologists’ consensus in labelling of ROI with and without SIFT 

 
True Positive ROI False Positive ROI Total ROI 

ROI labelled 

by Radiologists Consensus 
No 

Consensus 

Sub-

total 
Consensus 

No 

Consensus 

Sub-

total 
Consensus 

No 

Consensus 
Total 

Without SIFT 

assistance 
201 26 227 65 78 143 266 104 370 

With SIFT 

assistance 
211 28 239 47 60 107 258 88 346 

Change of 

labelled ROI 
5.00% 7.69% 5.29% -27.70% -23.08% -25.17% -3.10% -18.18% -6.93% 

P value P=0.16 P<0.001 P=0.419 
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3.2 Evaluation of efficiency 

Additionally, we performed an analysis of time for radiologists to label and annotate abnormalities with and without SIFT 

aids. With the help of SIFT, the efficiency can be improved by almost 50%. As shown in Table 4, the average review time 

without SIFT was 63.90s. The one with SIFT assistance was 36.85s, which reduced by 42.33%. 

Table 4. Radiologists’ annotation time with and without SIFT 

Review time (second) Radiologist 1 Radiologist 2 Radiologist 3 Average 

Without SIFT assistance 63.08 72.53 56.1 63.90 

With SIFT assistance 30.48 47.17 32.9 36.85 

Improvement (%) 51.68% 34.96% 41.35% 42.33% 

 

3.3 Evaluation of Accuracy for Different Types of Abnormalities 

In order to evaluate the accuracy of radiologists before and after the assistance, we conduct experiments on different types 

of abnormalities including fibrogenesis, pulmonary nodule, common pneumonia, secondary pulmonary tuberculosis and 

COVID-19. In the experiments, we define positive images as images containing specific abnormality and negative images 

as images containing other abnormality. 

As shown in Table 5, radiologist’s performance in labelling abnormalities statistically remain the same before and after 

use of SIFT. During real annotation, pathology of image is typically known except some comorbidity, radiologists are 

asked to label the center and annotate the boundary of abnormality.  Radiologists will not be asked to label the abnormality. 

Therefore, radiologist’s performance may not be the concern most of the time. 

Table 5. AUC values of radiologists with and without SIFT aids in five different abnormalities 

 Without SIFT Aids (2 weeks ago) With SIFT Aids P value 

Positive Case 
Radiologist 

1 

Radiologist 

2 

Radiologist 

3 

Radiologist 

1 

Radiologist 

2 

Radiologist 

3 
 

Pulmonary 

tuberculosis 
0.90 0.97 0.96 0.94 0.95 0.95 0.874 

Pulmonary nodule  0.94 0.97 0.96 0.9 0.95 0.95 0.118 

Pneumonia 0.86 0.90 0.92 0.87 0.91 0.88 0.728 

Covid-19 (GGO) 0.68 0.73 0.69 0.73 0.73 0.69 0.423 

Fibrogenesis 0.67 0.75 0.85 0.83 0.88 0.86 0.161 

Average 0.82 0.87 0.88 0.86 0.89 0.87 0.37 

 

SIFT is the system that will generate high-quality training, validation, and testing images for ML/AI.  SIFT is not designed 

as computer aided detection/diagnosis/triage system used by clinicians. To summarize, radiologists’ performance with and 

without SIFT are shown in Table 6. Consistency improves for annotated area and labelling. Without SIFT, radiologist 

annotated abnormality area is 29% larger than SIFT annotated area. Radiologists accept 93% SIFT annotated area and 

SIFT is able to reduce the inter-observer variation by 30%. Besides, consistency in labelling TP ROI and not labelling FP 
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ROI increases by 5.0% and 27.7% with SIFT Aids respectively. In the other aspect, efficiency increase by 42.33%. It only 

took SIFT 0.328 sec to process a single CXR on GPU or 3-5 sec on a CPU. 

Table 6. Summary of radiologists’ performance with and without SIFT 

  
Measures (Average) 

Without SIFT 

assistance 

With SIFT 

assistance 
Changes P value 

Consistency Annotated area 8,464,316 6,074,638 -28.23% P <0.001 

Consensus area (IoU) 0.629 0.762 25.27% P<0.001 

Consensus labelled abnormalities 

Number of consensus TP 201 211 5.00% P>0.001 

Number of consensus FP 65 47 -27.73% P<0.001 

Efficiency Average time to annotate single image (s) 63.90 36.85 42.33% P<0.001 

Accuracy Average AUC 0.857 0.873 0.016 P>0.001 

 

From experiments, we find that potentially, the labelling and annotation time can be 10 times faster should rating (0 to 5) 

is not used to label the abnormality. More importantly, use of SIFT does not change the accuracy of labelling. The irregular 

shape and low contrast of abnormality will affect the efficiency and annotation consistency. Therefore, AI is expected to 

help radiologists more on irregular shape of object. SIFT has helped more for radiologist who does not have much of 

experience in labelling and annotating certain abnormality. 

4. CONCLUSION 

In this paper, we propose an AI-based Smart Imagery Framing and Truthing (SIFT) System which is designed to generate 

high-quality annotated cases to train machine learning and artificial intelligence. Evaluation of consistency, efficiency and 

accuracy for radiologists with and without SIFT was conducted. The results show that SIFT can significantly increase the 

radiologists’ efficiency for the labeling and annotation of abnormalities. SIFT can also increase the radiologists’ 

consistency by reducing the inter- observer’s variation in labeling and annotating the abnormalities and areas. It reveals 

that our SIFT system can automatically annotate abnormalities to assist radiologists in generating high-quality image data 

labelling consistently and efficiently for the development of ML/DL in radiological applications. 
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