
DicomAnnotator: a Configurable Open-Source Software Program
for Efficient DICOM Image Annotation

Qifei Dong1
& Gang Luo1

& David Haynor2 & Michael O’Reilly2 & Ken Linnau2
& Ziv Yaniv3,4 & Jeffrey G. Jarvik5 &

Nathan Cross2

Society for Imaging Informatics in Medicine 2020

Abstract
Modern, supervised machine learning approaches to medical image classification, image segmentation, and object detection
usually require many annotated images. As manual annotation is usually labor-intensive and time-consuming, a well-designed
software program can aid and expedite the annotation process. Ideally, this program should be configurable for various anno-
tation tasks, enable efficient placement of several types of annotations on an image or a region of an image, attribute annotations
to individual annotators, and be able to display Digital Imaging and Communications in Medicine (DICOM)-formatted images.
No current open-source software program fulfills these requirements. To fill this gap, we developed DicomAnnotator, a
configurable open-source software program for DICOM image annotation. This program fulfills the above requirements and
provides user-friendly features to aid the annotation process. In this paper, we present the design and implementation of
DicomAnnotator. Using spine image annotation as a test case, our evaluation showed that annotators with various backgrounds
can use DicomAnnotator to annotate DICOM images efficiently. DicomAnnotator is freely available at https://github.com/UW-
CLEAR-Center/DICOM-Annotator under the GPLv3 license.

Keywords Image annotation . DICOM .Open source . Software design .Machine learning

Background

Modern, supervised machine learning approaches to im-
age classification, segmentation, and object detection
typically require many annotated images. Sa et al. [1]
used 974 annotated X-ray images to build a model for
intervertebral disc detection. Esteva et al. [2] used
129,450 annotated clinical images to construct a model
for classifying skin cancers. Performing manual image

annotation is labor-intensive, tedious, and time-consum-
ing, but often necessary for generating a high-quality
dataset. Annotators frequently need to place several types
of annotations in multiple areas of an image. In tasks
with ambiguity or subjectivity, multiple experts whose
time is expensive need to participate in the annotation
task to reach consensus, multiplying the effort required
for each dataset.

A well-designed software program can expedite image an-
notation. Ideally, the annotation program should meet the fol-
lowing requirements:

1. Customizable configurations should be available to sup-
port diverse annotation tasks. Tasks could require using
differing types of labels, such as one label for the whole
image vs. several other labels for the regions of interest in
the image. Also, differing shapes might be needed to seg-
ment the regions of interest in the image. For instance,
four corner points can outline a vertebral body on a spine
image, whereas a more complex shape would be needed
to segment a lobulated or irregular mass.

2. The program should allow efficient placement of several
types of annotations on one image, such as polygons to

* Nathan Cross
nmcross@uw.edu

1 Department of Biomedical Informatics and Medical Education,
University of Washington, Seattle, WA 98195, USA

2 Department of Radiology, University of Washington,
Seattle, WA 98195-7115, USA

3 Medical Science & Computing, LLC, Rockville, MD 20852, USA
4 National Institute of Allergy and Infectious Diseases, National

Institutes of Health, Bethesda, MD 20814, USA
5 Departments of Radiology, Neurological Surgery and Health

Services, University of Washington, Seattle, WA 98104-2499, USA

Journal of Digital Imaging
https://doi.org/10.1007/s10278-020-00370-w

http://crossmark.crossref.org/dialog/?doi=10.1007/s10278-020-00370-w&domain=pdf
http://orcid.org/0000-0002-5040-4340
https://github.com/UW-LEAR-enter/DICOM-nnotator
https://github.com/UW-LEAR-enter/DICOM-nnotator
mailto:nmcross@uw.edu

outline the regions of interest (termed bounding
polygons), labels for the regions of interest, and a label
for the whole image.

3. Several labels could be needed for each bounding poly-
gon or region of interest. Consider an annotation task
dealing with many regions of interest, each with its own
identifier (see Fig. 1). For each region, some programs
require the annotator to put a bounding polygon on the
region, select its identifier from a long list, and then input
the labels [3, 4]. Instead of having this inefficient
workflow, an annotation program should support an opti-
mized annotation approach, where multiple labels can be
efficiently applied to a region of interest.

4. For consensus annotations, the program should track
which label was made by which annotator. This can facil-
itate comparing the annotations and computing inter-
reader agreement.

5. Most medical images are of a higher bit depth than the
standard 8-bit graphic formats like Joint Photographic
Experts Group (JPEG) and Graphics Interchange Format
(GIF) support. Digital Imaging and Communications in
Medicine (DICOM) is the standard format encapsulating
medical images, patient information, and relevant imag-
ing metadata [5]. Within a DICOM file, images are often
stored in a high-fidelity state, either uncompressed or
compressed with lossless and less frequently lossy com-
pression. Depending on the modality, the bit depth is

often higher than 8-bit. Ideally, a program should allow
direct viewing of DICOM-formatted medical images with
window/leveling capabilities to access the full bit depth of
the original data. Given the high spatial resolution of
many medical images, additional image manipulation
functions like zooming and panning are also useful.

Multiple annotation programs for general [3, 4, 6–10] and
medical [11–15] images are publicly available. But, to the best
of our knowledge, none of them fulfills all of the requirements
mentioned above. In addition, some of these programs have
limited licensing models that are challenging for a small pro-
ject’s budget. To fill this gap, we developed DicomAnnotator,
a configurable open-source software program for DICOM im-
age annotation. This program satisfies the above requirements
and provides several user-friendly features to aid and acceler-
ate the annotation process. Although this program is designed
for annotating DICOM images, it also supports displaying and
annotating JPEG, Portable Network Graphics (PNG), and
Tagged Image File Format (TIFF).

Methods

This program was designed to fulfill the requirements men-
tioned above through a user-friendly graphical user interface
(GUI). We designed several basic functional modules to

ba

dc

L5 labels:
1) no hardware
2) fractured

L4 labels:
1) no hardware
2) normal

Fig. 1 Our approach to
annotating multiple regions of
interest in an image. The
subfigures are the following: a the
“L5” region identifier is selected,
b the annotator provides a
bounding polygon for L5 and
then inputs the labels for L5 (no
hardware, fractured), c the “L4”
identifier is automatically selected
after completing the last labels for
L5, and d the annotator provides a
bounding polygon for L4 and
then inputs the labels for L4 (no
hardware, normal). This process
continues until image annotation
is complete

J Digit Imaging

satisfy the requirements and four ancillary features to improve
user experience. These modules and features are illustrated
below using our spine image annotation task as a running
example. Given a spine image, our annotators needed to per-
form five basic annotation sub-tasks: (1) assign an osteoporo-
sis category [16] (normal, possible osteopenia, and definite
osteopenia) to the whole image; (2) outline the vertebral bod-
ies using bounding polygons, which are quadrilaterals not
necessarily oriented with the x- and y-axes; (3) determine each
vertebral body’s anatomic level (e.g., L4, L5, and S1); (4)
label whether each vertebral body had any overlying artificial
structure (e.g., spine hardware, metallic object, or catheter);
and (5) score each vertebral body using one of several fracture
classification systems (e.g., the modified algorithm-based
qualitative (m-ABQ)method [17], the semi-quantitative meth-
od [18], or the algorithm-based qualitative (ABQ) method
[19]). In the rest of the paper, we call the labels for the whole
image “image labels” and the labels for the regions of interest
“region labels.”

Functional Modules

The annotation program is divided into five modules: (1) the
configuration file, (2) the login page, (3) the image viewing
module, (4) the annotation module, and (5) the result file.

The configuration file eases the configuration process, as
the annotator can modify the configuration file without touch-
ing the program’s source code to adapt the program to a new
annotation task. The login page allows the annotator to enter a
username to track the annotator’s annotations. The image
viewing module supports image displaying, zooming, pan-
ning, and windowing/leveling. The annotation module is used
for placing annotations on an image. The result file stores the
annotation results and other information generated during the
annotation process.

As Fig. 2 shows, the annotator uses the modules sequen-
tially to complete an annotation task, although they are inte-
grated into a common user interface. Before running the pro-
gram for the first time, the configuration for the given anno-
tation task is set up in the configuration file. After the program
starts running, the annotator needs to provide a username on
the login page. Next, the main page for image viewing and

annotation loads. The annotator uses the GUI to annotate and
navigate through the images in the dataset. Throughout this
process, the annotations are stored in a result file for later use.

In this section, we show these modules’ functionality using
a radiograph. In Section A of the Appendix, we show how our
program can handle computed tomography (CT) images.

Configuration File

By modifying some attributes in the configuration file, an
annotator can adapt the program to a new annotation task.
For example, in the spine annotation task, one sub-task is to
assign an osteoporosis label to the whole image. The osteopo-
rosis label has three candidate categories: normal, possible
osteopenia, and definite osteopenia. In the configuration file,
the annotator can type these categories under the “image la-
bel” attribute, which is used to customize the candidate cate-
gories of an image label. Then when the program runs, these
categories will appear on the program’s user interface.

Adjusting some of the attribute values in the configuration
file can improve user experience. One example is the “zooming
speed” attribute, which determines how quickly the image
zooms in/out when the annotator scrolls the mouse wheel.

Customizing the attributes could affect several functional
modules including the annotation module, the image viewing
module, and the result file. Table 1 lists the main attributes in
the configuration file, the attributes’ meanings, and the mod-
ules affected by the attributes. An example of the configura-
tion file is given in Section A of the Appendix.

Login Page

The login page includes a field for an annotator to enter his/her
username. When an annotator makes an annotation, the pro-
gram maps the annotation to the supplied username and re-
cords the activity in the result file. In this way, the program
knows the annotation is made by this annotator.When a group
of annotators collaborate on an annotation task, this helps the
program track which annotation is made by which annotator.

The login page has another function allowing the annota-
tors to quickly set some basic configurations. For an annota-
tion task, if only a few configurations need to be specified,

Annotation
finishes

Modifying the
configuration

file

Image
viewing

Obtaining
results from
the result file

Annotation
Handling
the login

page

The program
starts running

The main page
shows up

Fig. 2 The steps to using
DicomAnnotator to annotate an
image dataset

J Digit Imaging

directly customizing them on the login page is more efficient
than editing the configuration file. For instance, Fig. 3 shows
the login page for the spine annotation task. The first entry is
for the annotator to input his/her username. The next two rows
are used to select the configurations: the fracture scoring sys-
tem and the order of the region identifiers shown on the pro-
gram’s main page. When the “START” button is clicked, the
program will document the username and open the main page.

Image Viewing Module

The image viewing module supports displaying DICOM im-
ages with a high bit depth and resolution, regardless of the
medical imaging modality. It also supports displaying JPEG,
PNG, and TIFF images. Figure 4 is a screenshot showing how
our program displays a DICOM image on the main page.

The image viewing module supports zooming, panning,
and windowing/leveling. In Fig. 5b, the target vertebral body
(L2) has been enlarged and centered using zooming and pan-
ning. The image’s contrast and brightness has been adjusted
using windowing/leveling. By default, zooming is done by
scrolling the mouse wheel, panning by holding down the right
mouse button and moving the mouse, and window/level ad-
justment by holding down the “shift” button on the keyboard
and moving the mouse horizontally and vertically to adjust the
window and level, respectively. The program can record the

window and level values adjusted by the annotator in the
result file, allowing the annotator to view the image with these
adjusted values when returning to this image.

Annotation Module

The annotation module is used to place bounding polygons,
region labels, and image labels. The approach to placing
bounding polygons and region labels satisfies the third re-
quirement mentioned in the “Background” section. We creat-
ed an annotation table (panel 10 of the main page) with mul-
tiple tabs, each representing a region of interest like a vertebral
body in the spine annotation task. Before placing the
bounding polygon and the region labels, the associated tab is
highlighted (e.g., S1 is highlighted in Fig. 4). The annotator
interacts with the widgets inside the tab to assign the related
labels and clicks the canvas to place the bounding polygon.

A bounding polygon is outlined by putting a given number
of points on the canvas as the polygon’s vertices. Each point is
given by clicking a place on the canvas. As shown in Fig. 5c,
by clicking the four corners of the vertebral body, the associ-
ated points are placed, forming a quadrilateral for extracting
the vertebral body.

Finally, an image label is assigned using panel 9 (see Fig.
4). Figure 6 shows the final annotations of a spine image.

Table 1 The main attributes in the configuration file, the attributes’ meanings, and the modules affected by the attributes

Attribute Meaning Affected module

List of region identifiers List of regions needing to be labeled for each image, e.g., the anatomic levels (L1, L2, L3…). The annotation
moduleNumber of vertices of the

bounding polygon
Number of vertices of the polygon that is used to capture each region of interest.

List of region labels Possible values of each region label. Here, the annotator provides a two-dimensional array. Each
element of this array appears on a separate line and contains the possible values of a region label.
In the spine image annotation example, the annotator assigns two types of region labels.
Accordingly, the array is displayed in two lines. The first line lists the possible values of whether
any artificial object overlays the vertebral body: yes and no. The second line lists the possible
category values used in a fracture classification system like the m-ABQ method [17].

Image label Possible values of the image label.

Input directory Directory from which the program reads the input images. The image
viewing
module

Zooming speed Determines how fast the image zooms in/out when the annotator scrolls the mouse wheel.

Windowing/leveling
sensitivity

Controls the rate at which the window and the level change when the mouse moves a unit of length.

Name/path of the result file Specifies the file storing the results. The result file

Fig. 3 The login page
demonstrating the username field,
a dropdown to select a
classification system, and radio
buttons to determine the order of
region identifiers shown on
DicomAnnotator’s main page

J Digit Imaging

Result File

The result file stores the annotation results. It also records
certain useful information including the username, the win-
dow and level values adjusted by the annotator for each

image, the annotator’s comments (see the “Commenting
System” section), and whether each image has been annotat-
ed. The username tracks which annotator places which anno-
tation. With the window/level information, the annotator can
review an image with its previously adjusted window and

Fig. 4 The main page of DicomAnnotator that is divided into 12 panels.
Panel 1: radio buttons used to select an operation mode; panel 2: a group
of buttons that allow the user to move between images, remove
annotations, reset the image display, manually save annotations, and
display help text; panel 3: text box showing details about the currently
displayed image and the annotation process; panel 4: buttons used to set
an image to unreadable when it is of low or non-diagnostic quality and to
horizontally flip the image; panel 5: buttons used to flag/unflag an image
for later review and to navigate through the flagged images; panel 6:

commenting system where comments from any user are displayed and
new comments can be added; panel 7: indicator of whether new
annotations have been stored in the result file; panel 8: canvas
displaying an image; panel 9: radio buttons for assigning an image
label; panel 10: annotation table which has been configured to apply
multiple annotations to each region of interest; panel 11: buttons used
to toggle off the annotated points in the image and to invert the image’s
grayscale; and panel 12: text boxes showing the identifiers of the regions
that are not assigned the default region label like “Normal”

cba

the target
vertebral body

the target
vertebral body

the target
vertebral body

Fig. 5 The user’s interaction with
the image in the annotation
process. a The target vertebral
body for annotation is identified
by the user using the default
display parameters. b The display
window and level, zooming, and
panning are employed to optimize
visualization of the target
vertebral body. c The boundary of
the target vertebral body is
marked by placing points at its
four corners

J Digit Imaging

level values. The annotator’s comments remind the annotator
of the concerns raised during annotation. If during the anno-
tation process, the annotator closed and then restarts the pro-
gram, the recorded information on whether each image has
been annotated enables the program to load the first unanno-
tated image and resume the annotation process.

Ancillary Features

We use four ancillary features to make the annotation program
more user-friendly. First, two operation modes, “Edit” and
“View Only,” are used to enable and disable the annotation
module, respectively. Second, a commenting system allows
annotators to leave comments on each image during annota-
tion. Third, an automatic window and level adjustment func-
tion is used to reduce the need to adjust the window and level
of an image. Fourth, two functions, one for splitting an image
set into several parts and the other for merging the result files
from multiple annotators, are available to help multiple anno-
tators collaborate on the same annotation task.

Operation Modes

Our software has two operation modes. The “Edit”mode allows
the annotator to annotate the images. The “View Only” mode
disables the annotation module, preventing new annotations to
be put on the images and allowing the annotator to only view the

images and the previously placed annotations. As Fig. 7 shows,
when the “View Only”mode is chosen, the widgets for placing
annotations (e.g., the annotation table) are disabled. On the can-
vas, the function for placing the polygon’s vertices is disabled,
while image manipulations are still allowed.

The “ViewOnly”mode is useful when an annotator checks
the annotations. Disabling the annotation module can avoid
unintended modification to the existing annotations, e.g.,
clicking the canvas and accidentally placing an extra point.
Depending on whether the annotator is annotating the image
or checking the annotations supplied by others, our program
can automatically select a proper mode. If the image is previ-
ously annotated by another annotator, the program regards the
current annotator to be checking the existing annotations and
switches to the “View Only” mode. Otherwise, the program
runs in the “Edit” mode.

Regardless, annotators can manually switch the mode by
selecting one of the radio buttons on panel 1 (see Fig. 4).
When the annotator tries to switch from the “View Only”
mode to the “Edit” mode, a dialog (Fig. 8) pops up asking
the annotator for confirmation. This further reduces the risk of
accidentally modifying the existing annotations.

Commenting System

During the annotation process, an annotator could have con-
cerns on issues like the image quality and the placement of

Fig. 6 The final annotations of an example spine image

J Digit Imaging

certain annotations. We embedded a commenting system into
the program to document the annotator’s thoughts. Panel 6 of
Fig. 4 gives the commenting system’s user interface. For each
image, comments can be entered in the text box which are
saved to the result file after the annotator clicks “submit com-
ments.” The commenting system allows different annotators
to comment on the same image. Figure 9 shows how such
comments are displayed.

Automatic Window and Level Adjustment

To reduce an annotator’s efforts of adjusting the window and
level, we embedded an automatic window and level adjust-
ment function based on contrast stretching ([20], Chapter 3).
Given an image, let B denote the image’s bit depth. 2B − 1 is
the maximum intensity level the image can reach. A patch at
the center of the image is extracted. The patch’s width and
height are one fourth of the image’s width and height, respec-
tively. Let pmax and pmin denote the maximum and minimum

intensity levels of the patch, respectively. In the regions of
interest on the image, we regard most pixels’ intensity levels
to be within the range of pmin to pmax. For each image pixel,
we map its intensity level I to

I 0 ¼ 2B−1
� �

I−pminð Þ= pmax−pminð Þ:

This horizontally stretches the image’s histogram, mapping
pmin and pmax in the original histogram to zero and 2B − 1 in
the transformed histogram, respectively. After doing the map-
ping, some pixels’ intensity levels could become > 2B − 1 or <
0. For each intensity level > 2B − 1, we set it to 2B − 1. For
each intensity level < 0, we set it to 0.

Splitting an Image Set and Merging Result Files

Multiple annotators can use our program to collaboratively
annotate a set of images in the following way:

Fig. 7 The main page in the “View Only”mode demonstrating the annotations with the manipulation tools grayed out to prevent accidental alteration of
the annotations. The user can return to the “Edit” mode by clicking the radio button in the upper left

Fig. 8 The confirmation dialog
that is displayed when switching
from the “View Only” mode to
the “Edit” mode

J Digit Imaging

1. Subsets of the image set are made, one per annotator.
Each subset of images is put into a separate folder.

2. For each annotator, a copy of the program and the
folder containing the assigned images is moved into
another folder termed the annotation folder. The an-
notation folder is transferred to one of the following
locations:

a. A server accessible by all of the annotators: Each
annotator’s folder goes into the corresponding home
folder. The annotator then logs into his/her account
and uses the program to annotate the images.

b. When each annotator uses his/her own computer:
Electronically send (e.g., SCP, secure FTP, and
website download) the annotation folder and the in-
structions for installing the program on his/her own
computer.

c. In a cloud environment (e.g., Amazon Web Services,
Google Cloud, and Microsoft Azure): The annotation
folder is copied to the annotator’s individual cloud
instance. The annotator could use Virtual Network
Computing (VNC), which allows him/her to access
the GUI of his/her cloud instance.

3. Each annotator runs DicomAnnotator and annotates
the assigned images. If the annotator uses a Linux sys-
tem, there is a Bash script to start DicomAnnotator
with an associated environment containing all the nec-
essary dependencies. This gives Linux novices an easy
way to run DicomAnnotator without having to manage
the Python environment and type complex Linux
commands.

4. After the images are annotated, the administrator of the
annotation team can obtain and merge the annotators’
result files.

The program offers the functions of splitting the image set
into multiple subsets and merging the result files from multi-
ple annotators.

Usability Evaluation

Users’ Backgrounds

To understand the usability of DicomAnnotator, we conducted
a usability evaluation on six users of various backgrounds. As
Table 2 shows, half of the users were neuroradiologists. The
other half were undergraduate and graduate students. These six
users had a wide variety of familiarity with medical imaging:
from no experience to several decades of experience. Before
doing the annotation, the neuroradiologists had never seen the
program. The undergraduate and graduate students had used the
program to view a small number of images. The number of
cases that each user reviewed with the program was recorded.

The literature suggests using six users can identify most of
the usability problems. Nielsen ([21], Chapter 6) proposed an
empirical formula N(1 − (1 − L)n) to estimate the number of
usability problems that a group of users can find collectively.
Here, N is the total number of usability problems. L is the
percentage of usability problems a user can find on average.
A typical value of L is 31%. n is the number of users. This
formula indicates that six users can identify ~ 89% of the
usability problems.

Process of Usability Evaluation

As Fig. 10 shows, the usability evaluation process had two
components: an annotation session followed by a survey ses-
sion. In the annotation session, the six users were asked to
annotate spine radiographs. DicomAnnotator’s log file was
used to analyze the program’s usability. In the survey session,
we did a Web-based survey on these users.

The program and radiograph DICOM files were used on a
server running the Ubuntu operating system (16.04.6 LTS).
From his/her personal computer, each user remotely logged
into the server via a VNC client to do the annotation tasks.
Before the annotation session, we created a user account for
each user on the server and gave each user a Bash script to run
the program.

Table 2 Description of each user in the usability evaluation listing his/
her occupation, medical imaging experience, and the number of images
each annotated

User ID Background Experience
with medical
maging (years)

Number of images
annotated

1 Neuroradiologist 5 9

2 Neuroradiologist 7 9

3 Neuroradiologist 31 9

4 Graduate student 0 9

5 Undergraduate student 0 60

6 Undergraduate student 0 60

Fig. 9 An example of comments displayed in the comment panel for an
image

J Digit Imaging

During the annotation session, the users performed several
annotation tasks including (1) assigning an osteoporosis cate-
gory to the whole image; (2) identifying the four corners of
each visible thoracic/lumbar vertebral body; (3) determining
each vertebral body’s anatomic level; (4) identifying any over-
lying artificial structure; (5) using the m-ABQmethod to score
each vertebral body [17]; (6) identifying unreadable radio-
graphs due to the wrong study type (cervical spine, chest,
abdominal, or pelvic radiographs), a non-lateral image, or
low image quality; and (7) identifying incorrect orientation
of the image and flipping it as needed to ensure the patient
faces to the left of the screen.

As Fig. 10 shows, the annotation session included two
rounds. The first round used nine radiographs. After being
introduced to the program, each of the three radiologists and
the graduate student did all of the tasks on the nine radio-
graphs. The second round used two different sets of radio-
graphs: the first with 20 radiographs and the second with 40
radiographs. After being oriented to the program and some
basic spine anatomy, two undergraduate students with no pri-
or experience in medical imaging did tasks 2, 3, 4, 6, and 7.
Each of these two students practiced on the first set of radio-
graphs and then formally annotated the second set of radio-
graphs. In each of the two rounds, each userwas given 2weeks
to do the assigned tasks at his/her own pace. The data logged
by the program were used to estimate the average amount of
time the user spent on a radiograph. In the second round, the
20 radiographs used for practice were unused for estimating
the average amount of time the user spent on a radiograph.

In the survey session, we used Google Forms to do a Web-
based survey to understand the users’ thoughts on the pro-
gram. We used the usability factors defined in Dabbs et al.
[22] to design our survey questions. The usability factors and
the survey questions are listed in Section B of the Appendix.

Each of the first seven questions measures a distinct usability
factor. The last open-ended question is used to gather addi-
tional user feedback. In question 4, if a user chose one or more
errors, we asked the user to also list the errors in a text box.

Results

DicomAnnotator

We built DicomAnnotator in Python 3.7.3 and used the
Anaconda3 distribution to manage packages. The main pack-
ages include PyQt5 for designing the user interface,
SimpleITK [23] for reading DICOM images, Matplotlib for
displaying images, and NumPy for processing arrays and ma-
trices. DicomAnnotator and its installation instructions are
available at https://github.com/UW-CLEAR-Center/
DICOM-Annotator.

Usability Evaluation

The Average Amount of Time To Annotate a Radiograph

Table 3 lists each user’s average amount of time to annotate a
radiograph, as well as the mean and the standard deviation of
these numbers in each round in the annotation session. The
undergraduate students did only some, but not all of the an-
notation tasks assigned to the neuroradiologists and the grad-
uate student. As tasks take different amounts of time to com-
plete, there is no basis to directly compare the average amount
of time the undergraduate students spent on annotating a ra-
diograph with that of the neuroradiologists and the graduate
student.

Table 3 A summary of each
user’s average amount of time
needed to annotate a radiograph

User
ID

Average amount of time to annotate a
radiograph (seconds)

Mean (standard deviation) of the average amount of time
needed to annotate a radiograph (seconds)

1 243.1 284.1 (43.7)
2 275.4

3 345.9

4 271.8

5 91.8 82.8 (12.7)
6 73.8

Users 5 and 6 did only some, but not all of the annotation tasks assigned to users 1–4

Annotation session
Survey session

Round 1 Round 2

Fig. 10 The usability evaluation
process

J Digit Imaging

https://github.com/UW-LEAR-enter/DICOM-nnotator
https://github.com/UW-LEAR-enter/DICOM-nnotator

The Survey Results

For each round in the annotation session and each of the survey
questions 1, 2, 3, 5, 6, and 7, Table 4 shows the mean and the
standard deviation of the ratings the users gave in their responses
to the question, as well as the p value of the t test that checks
whether these two rounds have the same mean of the ratings.

In question 4, five users reported encountering no severe
error in the program. One user in the second round of the
annotation session reported running into severe errors 4–10
times. In particular, the user reported errors running the Bash
script to start the program and said that every time he/she was
able to get around by copying the commands from the Bash
script to the terminal and running them one by one to start the
program. Thus, it is likely that either that copy of the Bash
starting script contained some errors or the user used the Bash
script incorrectly, rather than the errors being attributable to
DicomAnnotator. This behavior has not been reproduced and
no other users have since complained of this problem.

The users’ comments to question 8 include (1) “This is an
excellent piece of software that is intuitive and remarkably
stable”; (2) “Windowing/leveling remains somewhat chal-
lenging”; and (3) “I wish that there was a brightness/contrast
bar to adjust the images instead of having to press down on
shift andmove yourmouse a certain way, because it’s not very
straightforward to know which way to shift the mouse at
which angle to adjust the brightness.” The first two comments
came from the users in the first round of the annotation ses-
sion. The third comment came from a user in the second round
of the annotation session.

Discussion

Our annotation program fulfills the requirements mentioned in
the “Background” section and offers several user-friendly fea-
tures. The usability evaluation’s annotation session showed that

without previously using the program, users of various back-
grounds can use our program to quickly annotate medical im-
ages with multiple types of labels. This demonstrates that the
program is easy to learn and efficient to use. The survey results
showed that most users thought our program is easy to learn,
effective, efficient to use, and flexible. They agreed the pro-
gram’s features and functions are easy to remember. Overall,
they were satisfied with our program. One user reported running
into severe errors. Yet, after working with the user, we found the
errors are likely not due to the program. As there are no contra-
dictory user complaints, we consider the program to be stable.

Based on the users’ feedback, we optimized the pro-
gram. Two users requested additional options for control-
ling window and level settings. One of these two users
suggested brightness/contrast bars. Yet, after discussing
with the other users, we reached the consensus that using
brightness/contrast bars is inefficient. If the brightness/
contrast bars were used, an annotator would need to fre-
quently move his/her mouse cursor between the brightness/
contrast bars and the program’s annotation area (the main
page’s canvas or annotation table). To avoid this ineffi-
ciency, we give the user multiple ways to adjust the win-
dow and level: (1) hold down the “shift” key and move the
mouse horizontally and vertically to adjust the window and
level, respectively, and (2) on the keyboard, press “a” or
“d” to increment or decrement the window setting and “w”
or “s” to increment or decrement the level setting.

There are several interesting areas for future work. The
program is currently optimized for displaying single images.
The tasks for annotating video or stacks of cross-sectional data
could require other types of annotations, like assigning labels
on the entire video or stack of images from a cross-sectional
series. This would require new functionality to be built into
the program. Moreover, some annotation tasks could require a
specific shape or aspect ratio of the bounding polygon like a
rectangle. New functions for constraining the bounding poly-
gon’s shape can be built into the program.

Table 4 A summary of the
ratings for the survey questions in
the first round and second round
of the annotation session and the
p values to describe the difference
in the mean of the ratings between
these two rounds. The survey
questions used to assess the
usability factors are listed in
Table 5

Sequence
number of
the
question

Usability
factor

Mean (standard deviation) of the
ratings given by the users in the first
round of the annotation session

Mean (standard deviation) of
the ratings given by the users
in the second round of the
annotation session

p
value

1 Learnability 4.50 (0.58) 3.00 (1.41) 0.39

2 Effectiveness 5.00 (0.00) 4.50 (0.71) 0.50

3 Efficiency 4.75 (0.50) 3.50 (0.71) 0.15

5 Flexibility 4.50 (0.58) 4.00 (1.41) 0.71

6 Memorability 4.75 (0.50) 4.00 (1.41) 0.60

7 User
satisfac-
tion

4.75 (0.50) 4.00 (1.41) 0.60

Results of survey question 4 are not included because it uses a list of ranges which are difficult to summarize with
a single mean and standard deviation. However, only one user reported errors

J Digit Imaging

Conclusion

Conducting medical image classification, image segmenta-
tion, and object detection usually requires many annotated
images. To reduce the burden of manual annotation, we de-
signed DicomAnnotator, a DICOM image annotation pro-
gram. It integrates multiple functional modules tomeet several
annotation requirements and provides four ancillary user-
friendly features. The program is easy to learn, is efficient to
use, and allows annotators to quickly make several types of
annotations on a large set of DICOM images.

Authors’ Contributions NC, DH, and JGJ conceptualized and designed
the study. QD did the coding implementation and evaluation of
DicomAnnotator. QD, DH, and NC performed literature review. QD
wrote the initial draft of the paper. GL and NC extensively edited and
revised the paper. DH, MO, KL, ZY, and JGJ revised the paper. DH, GL,
JGJ, and NC contributed equally to the paper.

Funding Information Research reported in this publication was support-
ed by the University of Washington CLEAR Center for Musculoskeletal
Research. The CLEAR Center is supported by the National Institute of
Arthritis and Musculoskeletal and Skin Diseases (NIAMS) of the
National Institutes of Health under Award Number P30AR072572. The
content is solely the responsibility of the authors and does not necessarily
represent the official views of the National Institutes of Health.

Ziv Yaniv’s work was supported by the Intramural Research Program
of the US National Institutes of Health, National Library of Medicine.

Compliance with Ethical Standards

Conflict of Interest Qifei Dong reports grants fromNIH/NIAMS, during
the conduct of the study.

Dr. Luo reports grants fromNIH/NIAMS, during the conduct of the study.
Dr. Haynor reports grants from NIH/NIAMS, during the conduct of

the study.
Dr. Linnau reports grants from Siemens Healthineers, personal fees

from Siemens Healthineers, and other from Cambridge Press, outside the
submitted work.

Dr. Jarvik reports grants from NIH/NIAMS, during the conduct of the
study, and Springer Publishing: Royalties as a book co-editor; GE-
Association of University Radiologists Radiology Research Academic
Fellowship (GERRAF): travel reimbursement for Faculty Board of
Review; and Wolters Kluwer/UpToDate: Royalties as a chapter author.

Dr. Cross reports grants from NIH/NIAMS, during the conduct of the
study, personal fees from Philips Medical, and other from GE Medical,
outside the submitted work.

All other authors report no conflict of interest.

Appendix

An Example of Modifying the Configuration File for
Annotating CT Images

We give an example of modifying the configuration file for
annotating spine CT images. This annotation task requires an
annotator to annotate lumbar vertebral bodies in a sequence of
four sub-tasks: (1) decide each vertebral body’s anatomic lev-
el; (2) outline each vertebral body by placing four points at the
vertebral body’s corners and two points in the middle of the
vertebral body’s endplates; (3) for each vertebral body, check
whether it is fractured and whether any artificial object over-
lays it; (4) for the CT image, decide an osteopenia score for the
spine based on Saville’s method [24], which used five differ-
ent grades (grades 0 to 4) to describe various osteopenia se-
verities. Sub-task 2 is to place the bounding polygon. Sub-task
3 is to assign labels to each region of interest. Sub-task 4 is to
provide the image label.

For this annotation task, we modify the configuration file as
shown in Fig. 11. Figure 12 shows DicomAnnotator’s main
page after the annotation task is done. In the configuration file,
the image_label_description attribute describes the image label
and is shown at the top right corner of the main page (see
Fig. 12), where the annotator selects an image label. The
region_labels attribute gives all possible region labels. There,
the checkbox sub-attribute shows those possible region labels,
each of which appears as a separate check box in the annotation
table on the main page (see Fig. 12). The radiobuttons sub-
attribute shows those possible region labels that are listed as
radio buttons in the annotation table on the main page (see
Fig. 12). The radiobuttons sub-attribute is equivalent to the “list
of region labels” attribute listed in Table 1. Table 1 also de-
scribes the other attributes shown in Fig. 11.

Fig. 11 The configuration file for
the spine CT image annotation
task in JSON format

J Digit Imaging

Usability Factors and Survey Questions

The usability factors and the survey questions are listed in
Table 5.

Fig. 12 DicomAnnotator demonstrating display and annotations of an example sagittal lumbar spine CT image

Table 5 These survey questions were used to determine the usability of DicomAnnotator across a variety of factors

Sequence number
of the question

Usability factor Question

1 Learnability Initially, how easy was it to learn to use the program and its functions? Ratings are on a 1–5 scale with
anchors of difficult/easy.

2 Effectiveness Does the program include all of the functions you need for completing your image annotation task?
Ratings are on a 1–5 scale with anchors of not at all/everything I needed.

3 Efficiency Did the program help you annotate the images efficiently? Ratings are on a 1–5 scale with anchors of
inefficient/efficient.

4 Errors When using the program, how many times did you encounter severe errors such as software crash,
software having no response, and annotation not stored? The choices for the response are
0, 1–3, 4–10, 11–20, and 20+.

5 Flexibility Does the program give enough shortcuts and ways of access (e.g., window/level, pan, and
navigating images) for the annotation task? Ratings are on a 1–5 scale with anchors of
cumbersome or hard to use functions/fast and easy access to all of the functions.

6 Memorability Are the program’s features and functions easy to remember? Ratings are on a 1–5 scale
with anchors of hard/easy.

7 User satisfaction Overall, are you satisfied with the program? Ratings are on a 1–5 scale with anchors
of unsatisfied/satisfied.

8 Please provide comments, thoughts, or features that you wish DicomAnnotator to have,
if any, in the text box below.

J Digit Imaging

References

1. Sa R, Owens W, Wiegand R, Studin M, Capoferri D, Barooha K,
Greaux A, Rattray R, Hutton A, Cintineo J, Chaudhary V:
Intervertebral disc detection in X-ray images using faster R-CNN.
In: Proceedings of International Conference of the IEEE
Engineering in Medicine and Biology Society, pp 564-567, 2017

2. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM,
Thrun S: Dermatologist-level classification of skin cancer with
deep neural networks. Nature 542(7639):115-118, 2017.

3. Labelbox. The leading training data solution. Available at https://
labelbox.com. Accessed 18 June 2019.

4. Dataturks. Best online platform for your ML data annotation needs.
Available at https://dataturks.com. Accessed 18 June 2019.

5. Pianykh OS: Digital Imaging and Communications in Medicine
(DICOM): a Practical Introduction and Survival Guide, 2nd edition,
Berlin: Springer, 2012.

6. Halaschek-Wiener C, Golbeck J, Schain A, Grove M, Parsia B,
Hendler J: Photostuff—an image annotation tool for the semantic
web. In: Proceedings of the 4th International Semantic Web
Conference, pp 6-10, 2005

7. Tuffield M, Harris S, Dupplaw DP, Chakravarthy A, Brewster C,
Gibbins N, O'Hara K, Ciravegna F, Sleeman D, Wilks Y, Shadbolt
NR: Image annotation with photocopain. In: The First International
Workshop on Semantic Web Annotations for Multimedia
(SWAMM 2006) at WWW 2006, 2006

8. Saathoff C, Schenk S, Scherp A: Kat: the k-space annotation tool.
In: K-Space Plenary Meeting Co-located at Int. Conf. on Semantic
and Digital Media Technologies, 2008.

9. Nieto X, Camps N, Marques F: GAT: a graphical annotation tool
for semantic regions. Multimed Tools Appl 46(2-3):155-174, 2010.

10. Dutta A, Zisserman A: The VIA annotation software for images,
audio and video. In: Proceedings of the 27th ACM International
Conference on Multimedia, pp 2276-2279, 2019

11. Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE,
Arena ET, Eliceiri KW: ImageJ2: ImageJ for the next generation
of scientific image data. BMC Bioinformatics 18(1):529, 2017.

12. McAuliffe MJ, Lalonde FM, McGarry D, Gandler W, Csaky K,
Trus BL: Medical image processing, analysis and visualization in
clinical research. In: Proceedings of the 14th IEEE Symposium on
Computer-Based Medical Systems, pp 381-386, 2001

13. Philbrick KA,Weston AD, Akkus Z, Kline TL, Korfiatis P, Sakinis
T, Kostandy P, Boonrod A, Zeinoddini A, Takahashi N, Erickson
BJ: RIL-Contour: a medical imaging dataset annotation tool for and
with deep learning. J Digital Imaging 32(4):571-581, 2019.

14. Rubin DL, Akdogan MU, Altindag C, Alkim E: ePAD: an image
annotation and analysis platform for quantitative imaging.
Tomography 5(1):170, 2019.

15. MD.ai. The platform for medical AI. Available at https://www.md.
ai. Accessed 18 June 2019.

16. Masud T, Mootoosamy I, McCloskey EV, O’Sullivan MP, Whitby
EP, King D, Matson MB, Doyle DV, Spector TD: Assessment of
osteopenia from spine radiographs using two different methods: the
Chingford study. Br J Radiol 69(821):451-456, 1996.

17. Lentle BC, Berger C, Probyn L, Brown JP, Langsetmo L, Fine B,
Lian K, Shergill AK, Trollip J, Jackson S, LeslieWD: Comparative
analysis of the radiology of osteoporotic vertebral fractures in wom-
en and men: cross-sectional and longitudinal observations from the
Canadian multicentre wsteoporosis study (CaMos). J Bone Miner
Res 33(4):569-579, 2017.

18. Genant HK, Wu CY, Van Kuijk C, Nevitt MC: Vertebral fracture
assessment using a semiquantitative technique. J Bone Miner Res
8(9):1137-1148, 1993.

19. Jiang G, Eastell R, Barrington NA, Ferrar L: Comparison of
methods for the visual identification of prevalent vertebral fracture
in osteoporosis. Osteoporos Int 15(11):887-896, 2004.

20. Gonzalez RC, Woods RE: Digital Image Processing, 4th edition,
New York, NY: Pearson, 2018.

21. Nielsen J: Usability Engineering, San Francisco, CA: Morgan
Kaufmann, 1993.

22. Dabbs AD, Myers BA, Mc Curry KR, Dunbar-Jacob J, Hawkins
RP, Begey A, Dew MA: User-centered design and interactive
health technologies for patients. Comput Inform Nurs 27(3):175-
183, 2009.

23. Lowekamp BC, Chen DT, Ibáñez L, Blezek D: The design of
SimpleITK. Front Neuroinform 7:45, 2013.

24. Saville PD: A quantitative approach to simple radiographic diagno-
sis of osteoporosis: its application to the osteoporosis of rheumatoid
arthritis. Arthritis and Rheumatism 10:416-422, 1967.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

J Digit Imaging

https://labelbox.com
https://labelbox.com
https://dataturks.com
https://www.md.ai
https://www.md.ai

	DicomAnnotator: a Configurable Open-Source Software Program for Efficient DICOM Image Annotation
	Abstract
	Background
	Methods
	Functional Modules
	Configuration File
	Login Page
	Image Viewing Module
	Annotation Module
	Result File

	Ancillary Features
	Operation Modes
	Commenting System
	Automatic Window and Level Adjustment
	Splitting an Image Set and Merging Result Files

	Usability Evaluation
	Users’ Backgrounds
	Process of Usability Evaluation

	Results
	DicomAnnotator
	Usability Evaluation
	The Average Amount of Time To Annotate a Radiograph
	The Survey Results

	Discussion
	Conclusion
	Appendix
	An Example of Modifying the Configuration File for Annotating CT Images
	Usability Factors and Survey Questions

	References

