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Purpose: Cardiac image segmentation is a critical process for generating personalized models of the
heart and for quantifying cardiac performance parameters. Fully automatic segmentation of the left
ventricle (LV), the right ventricle (RV), and the myocardium from cardiac cine MR images is chal-
lenging due to variability of the normal and abnormal anatomy, as well as the imaging protocols. This
study proposes a multi-task learning (MTL)-based regularization of a convolutional neural network
(CNN) to obtain accurate segmenation of the cardiac structures from cine MR images.
Methods: We train a CNN network to perform the main task of semantic segmentation, along with
the simultaneous, auxiliary task of pixel-wise distance map regression. The network also predicts
uncertainties associated with both tasks, such that their losses are weighted by the inverse of their cor-
responding uncertainties. As a result, during training, the task featuring a higher uncertainty is
weighted less and vice versa. The proposed distance map regularizer is a decoder network added to
the bottleneck layer of an existing CNN architecture, facilitating the network to learn robust global
features. The regularizer block is removed after training, so that the original number of network
parameters does not change. The trained network outputs per-pixel segmentation when a new patient
cine MR image is provided as an input.
Results: We show that the proposed regularization method improves both binary and multi-class
segmentation performance over the corresponding state-of-the-art CNN architectures. The evaluation
was conducted on two publicly available cardiac cine MRI datasets, yielding average Dice coeffi-
cients of 0.84 � 0.03 and 0.91 � 0.04. We also demonstrate improved generalization performance
of the distance map regularized network on cross-dataset segmentation, showing as much as 42%
improvement in myocardium Dice coefficient from 0.56 � 0.28 to 0.80 � 0.14.
Conclusions: We have presented a method for accurate segmentation of cardiac structures from cine
MR images. Our experiments verify that the proposed method exceeds the segmentation performance
of three existing state-of-the-art methods. Furthermore, several cardiac indices that often serve as diag-
nostic biomarkers, specifically blood pool volume, myocardial mass, and ejection fraction, computed
using our method are better correlated with the indices computed from the reference, ground truth seg-
mentation. Hence, the proposed method has the potential to become a non-invasive screening and diag-
nostic tool for the clinical assessment of various cardiac conditions, as well as a reliable aid for
generating patient specific models of the cardiac anatomy for therapy planning, simulation, and guid-
ance. © 2019 American Association of Physicists in Medicine [https://doi.org/10.1002/mp.13853]
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1. INTRODUCTION

Magnetic resonance imaging (MRI) is the standard-of-care
imaging modality for non-invasive cardiac diagnosis, due to
its high contrast sensitivity to soft tissue, good image quality,
and lack of exposure to ionizing radiation. Cine cardiac MRI
enables the acquisition of high resolution two-dimensional
(2D) anatomical images of the heart throughout the cardiac
cycle, capturing the full cardiac dynamics via multiple 2D +
time short-axis acquisitions spanning the whole heart.

Segmentation of the heart structures from these images
enables measurement of important cardiac diagnostic indices
such as myocardial mass and thickness, left/right ventricle
(LV/RV) volumes and ejection fraction. Furthermore, high-
quality personalized heart models can be generated for car-
diac morphology assessment, treatment planning, as well as
precise localization of pathologies during an image-guided
intervention. Manual delineation is the standard cardiac
image segmentation approach, which is not only time con-
suming, but also susceptible to high inter- and intraobserver
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variability. Hence, there is a critical need for semi-/fully auto-
matic methods for cardiac cine MRI segmentation. However,
the MR imaging artifacts such as bias fields, respiratory
motion, and intensity inhomogeneity and fuzziness, render
the segmentation of heart structures challenging. Figure 1
shows a reference segmentation and the results of our auto-
matic segmentation method.

A comprehensive review of cardiac MR segmentation
techniques can be found in Ref. [1,2]. These techniques can
be classified based on the amount of prior knowledge used
during segmentation. First, the no-prior-based methods rely
solely on the image content to segment the heart structures
based on intensity thresholds, and edge- and/or region-infor-
mation. Hence, these methods are often ineffective for the
segmentation of ill-defined boundary regions. Second, the
deformable models such as active contours and level-set
methods incorporate weak-prior information regarding the
smoothness of the segmented boundaries; similarly, graph
theoretical models assume connectivity between the neigh-
boring pixels providing piece-wise smooth segmentation
results. Third, the Active shape and appearance models and
Atlas-based methods impose very strong-prior information
regarding the geometry of the heart structures and sometimes
are too restricted by the training set. These weak-/strong-
prior-based methods may overcome segmentation challenges
in ill-defined boundary regions but, nevertheless, at a high
computational cost. Lastly, Machine Learning-based methods
aim to predict the probability of each pixel in the image
belonging to the foreground/background class based on either
patch-wise or image-wise training. These methods are able to
produce fast and accurate segmentation, provided the training
set captures the population variability.

In the context of deep learning, Long et al.3 proposed the
first fully convolutional network (FCN) for semantic image
segmentation, exploiting the capability of convolutional neu-
ral networks (CNNs)4–6 to learn task-specific hierarchical fea-
tures in an end-to-end manner. However, their initial adoption
in the medical domain was challenging, due to the limited
availability of medical imaging data and associated costly
manual annotation. These challenges were later circumvented

by patch-based training, data augmentation, and transfer
learning techniques.7,8

Specifically, in the context of cardiac image segmentation,
Tran9 adapted a FCN architecture for segmentation of various
cardiac structures from short-axis MR images. Similarly,
Poudel et al.10 proposed a recurrent FCN architecture to lever-
age interslice spatial dependencies between the 2D cine MR
slices. Avendi et al.11 reported improved accuracy and robust-
ness of the LV segmentation by using the output of a FCN to
initialize a deformable model. Furthermore, Oktay et al.12

pretrained an autoencoder network on ground-truth segmen-
tations and imposed anatomical constraints into a CNN net-
work by adding l2-loss between the autoencoder
representation of the output and the corresponding ground-
truth segmentation. Several modifications to the FCN archi-
tecture and various post-processing schemes have been pro-
posed to improve the semantic segmentation results as
summarized in Ref. [13].

To improve the generalization performance of neural net-
works, various regularization techniques have been proposed.
These include parameter norm penalty (e.g., weight decay,14)
noise injection,15 dropout,16 batch normalization,17 adversar-
ial training,18 and multi-task learning (MTL).19 In this paper,
we focus on MTL-based network regularization. When a net-
work is trained on multiple related tasks, the inductive bias
provided by the auxiliary tasks causes the model to prefer a
hypothesis that explains more than one task. This helps the
network ignore task-specific noise and hence focus on learn-
ing features relevant to multiple tasks, improving the general-
ization performance.20 Furthermore, MTL reduces the
Rademacher complexity20 of the model (i.e., its ability to fit
random noise), hence reducing the risk of overfitting. An
overview of MTL applied to deep neural networks can be
found in Ref. [21].

Multi-task learning has been widely employed in computer
vision problems due to the similarity between various tasks
being performed. A FCN architecture with a common enco-
der and task specific decoders was proposed in Ref. [22] to
perform joint classification, detection, and semantic segmen-
tation, targeting real-time applications such as autonomous

FIG. 1. Segmentation results for LV blood-pool, LV myocardium, and RV blood-pool. First column shows the short-axis view, second and third columns show
orthogonal long-axis views, and the fourth column shows generated three-dimensional models. Reference (top row) and segmentation obtained from the DMR-
UNet model (bottom row). [Color figure can be viewed at wileyonlinelibrary.com]
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driving. A similar single-encoder-multiple-decoder architec-
ture described in Ref. [23] performs semantic segmentation,
depth regression, and instance segmentation, simultaneously.
The architecture was further expanded by Ref. [24] to auto-
matically learn the weights for each task based on its uncer-
tainty, obtaining state-of-the-art results.

In the context of medical image analysis, Moeskops et al.25

demonstrated the use of MTL for joint segmentation of six tis-
sue types from brain MRI, the pectoral muscle from breast
MRI, and the coronary arteries from cardiac computed tomogra-
phy angiography (CTA) images, with performance equivalent to
networks trained on individual tasks. Similarly, Valindria et al.26

employed a MTL framework to improve the performance for
multi-organ segmentation from CT and MR images, exploring
various encoder-decoder network architectures. Specific to the
cardiac MR applications, Xue et al.27 proposed a network cap-
able of learning multi-task relationship in a Bayesian framework
to estimate various local/global LV indices for full quantification
of the LV. Similarly, Dangi et al.28 performed joint segmentation
and quantification of the LV myocardium using the learned task
uncertainties to weigh the losses, improving upon the state-of-
the-art results. Most of these MTL methods in medical image
analysis aim to perform various clinically relevant tasks simulta-
neously. However, the focus of this work is on improving the
segmentation performance of various FCN architectures using
MTL as a network regularizer.

We propose to use the rich information available in the
distance map of the segmentation mask as an auxiliary task
for the image segmentation network. Since each pixel in the
distance map represents its distance from the closest object
boundary, this representation is redundant and robust com-
pared to the per-pixel image label used for semantic segmen-
tation. Furthermore, the distance map represents the shape
and boundary information of the object to be segmented.
Hence, training the segmentation network on the additional
task of predicting the distance map is equivalent to enforcing
shape and boundary constraints for the segmentation task.

Related work to ours include,29 which take an image and
its semantic segmentation as an input and predict the distance
transform of the object instances, such that, thresholding the
distance map yields the instance segmentation. Similarly,30

represent the boundary of the object instances using a trun-
cated distance map, which is used to refine the instance seg-
mentation result. However, unlike these methods, our goal is
not to perform instance segmentation, but to refine the
semantic segmentation result using the distance map as an
auxiliary task. The most closely related work to ours is pre-
sented in Ref. [31] for segmentation of building footprints
from satellite images using a MTL framework. In their study,
the truncated distance map is predicted at the end of the deco-
der network and is further used to refine the boundary of the
predicted segmentation, resulting in increased model com-
plexity. Unlike that work, we impose a global shape con-
straint at the bottleneck layer of FCN architectures, using
MTL as a network regularizer without increasing the model
complexity. The proposed model is customized towards car-
diac MRI image segmentation, as we accommodate for slices

containing no foreground pixels (in apical and basal regions).
Furthermore, we demonstrate better generalization perfor-
mance of the proposed network with improved cross-dataset
segmentation results.

Contributions: In this work, we propose to impose shape
and boundary constraints in a CNN framework to accurately
segment the heart chambers from cardiac cine MR images.
We impose soft-constraints by including a distance map pre-
diction as an auxiliary task in a MTL framework. We exten-
sively evaluate our proposed model on two publicly available
cardiac cine MRI datasets. We demonstrate that the addition
of a distance map regularization block improves the segmen-
tation performance of three FCN architectures, without
increasing the model complexity and inference time. We
employ a task uncertainty-based weighing scheme to auto-
matically learn the weights for the segmentation and distance
map regression tasks during training, and show that this
method improves segmentation performance over the fixed
equal-weighting scheme. Additionally, we show that the pro-
posed regularization technique improves the segmentation
performance in the challenging apical and basal slices, as
well as across several different pathological heart conditions.
This improvement is also reflected on the computed clinical
indices important for cardiac health diagnosis. Finally, we
demonstrate better generalization ability using the proposed
regularization technique with significantly improved cross-
dataset segmentation performance, without tuning the net-
work to a new data distribution.

2. MATERIALS AND METHODS

2.A. CNN for semantic image segmentation

Let x ¼ fxi 2 IR; i 2 Sg be the input intensity image and
y ¼ fyi 2 L; i 2 Sg be the corresponding image segmenta-
tion, with C ¼ f0; 1; 2; . . .;C � 1g representing a set of C
class labels, and S representing the image domain. The task
of a CNN-based segmentation model, with weights W, is to
learn a discriminative function fWð�Þ that models the underly-
ing conditional probability distribution p(y|x). The output of
a CNN model is passed through a softmax function to pro-
duce a probability distribution over the class labels, such that,
the function fWð�Þ can be learned by maximizing the likeli-
hood:

pðy ¼ cjfWðxÞÞ ¼ SoftmaxðfWc ðxÞÞ ¼ exp fWc ðxÞ� �
P

c02L exp fWc0 ðxÞ
� �

(1)

where fWc ðxÞ represents the c’th element of the vector fWðxÞ.
In practice, the negative log-likelihood �logðpðyjfWðxÞÞÞ is
minimized to learn the optimal CNN model weights, W. This
is equivalent to minimizing the cross-entropy loss of the
ground-truth segmentation, y, with respect to the softmax of
the network output, fWðxÞ.

A typical FCN architecture (Fig. 2) for image segmenta-
tion consists of an encoder and a decoder network. The
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encoder network includes multiple pooling (max/average
pooling) layers applied after several convolution and non-lin-
ear activation layers (e.g., Rectified linear unit (ReLU)32). It
encodes hierarchical features important for the image seg-
mentation task. To obtain per-pixel image segmentation, the
global features obtained at the bottleneck layer need to be
upsampled to the original image resolution using the decoder
network. The upsampling filters can either be fixed (e.g.,
nearest-neighbor or bilinear upsampling), or can be learned
during the training (deconvolutional layer). The final output
of a decoder network is passed to a softmax classifier to
obtain a per-pixel classification.

In a SegNet33 [Fig. 2(a)] architecture, the location of fea-
ture maps during downsampling (i.e., pooling indices) are
saved during encoding, such that the decoder produces sparse
feature maps by upsampling its inputs using these pooling
indices. These sparse feature maps are then convolved with a
trainable filter bank to obtain dense feature maps, and are
finally passed through a softmax classifier to produce per-
pixel image segmentation. Since the decoder in the SegNet
architecture uses only the global features obtained at the bot-
tleneck layer of the encoder, the high frequency details in the
segmentation are lost during the upsampling process.

The U-Net architecture34 [Fig. 2(b)] introduced skip con-
nections, by concatenating output of encoder layers at differ-
ent resolutions to the input of the decoder layers at
corresponding resolutions, hence preserving the high fre-
quency details important for accurate image segmentation.

Furthermore, the skip connections are known to ease the net-
work optimization35 by introducing multiple paths for back-
propagation of the gradients, hence, mitigating the vanishing/
exploding gradient problem. Similarly, skip connections also
allow the network to learn lower level details in the outer lay-
ers and focus on learning the residual global features in the
deeper encoder layers. Hence, the U-Net architecture is able
to produce excellent segmentation results using limited train-
ing data with augmentation, and has been extensively used in
medical image segmentation.

We observed that learned deconvolution filters in the orig-
inal U-Net architecture can be replaced by a SegNet-like
decoder to form a hybrid architecture with reduced network
parameters. We refer to this modified architecture as U-Seg-
Net [Fig. 2(e)] throughout this paper, and use it as one of the
baseline FCN architectures.

2.B. Distance map regularization network

The distance map of a binary segmentation mask can be
obtained by computing the Euclidean distance of each pixel
from the nearest boundary pixel.36 This representation pro-
vides rich, redundant, and robust information about the
boundary, shape, and location of the object to be segmented.
For a binary segmentation mask, where X ¼ fxi : yi ¼ 1;
i 2 Sg is the set of foreground pixels, @Ω represent the
boundary pixels, and d(�,�) is the Euclidean distance between
any two pixels, the truncated signed distance map, D(x), is

FIG. 2. Baseline FCN architectures and their simplified block representation. The input image is passed through several convolution, rectified linear unit (ReLU)
nonlinearity, and downsampling operations during encoding. This encoded representation is passed through several convolution, ReLU nonlinearity, and upsam-
pling operations during decoding, such that, the final output has the same spatial resolution as the input. (a) SegNet Architecture: max-pooling operation is used
for downsampling, such that the location of the pooled features (i.e., pooling indices) are saved; these pooling-indices are later used to map the features back in
their original location during upsampling; (b) UNet Architecture: skip connections from encoder to decoder layers at different resolutions are added for better
flow of information; deconvolution filters are learned for upsampling the feature maps. Simplified representations of: (c) SegNet Architecture, (d) UNet Architec-
ture, and (e) USegNet Architecture, using both skip connections as well as the pooling indices for upsampling.
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computed as:

DðxiÞ ¼
dðxi; @XÞ if xi 2 X;X 62 £
�minðdðxi; @XÞ; TÞ if xi 62 X;X 62 £
�T if X 2 £

8<
: (2)

where

dðxi; @XÞ ¼ min
qi2@X

dðxi; qiÞ

is the minimum distance of pixel xi 2 x from the boundary
pixels qi 2 @X. We truncate the signed distance map at a pre-
defined distance threshold, �T, hence assigning this maxi-
mum negative distance to the slices not containing any
foreground pixels (i.e., X 2 £), indicating all pixels in the
slice are far from the foreground (typically in the apical/basal
regions of cardiac cine MR images).

The distance map regularization network is a SegNet-
like decoder network, upsampling the feature maps
obtained at the bottleneck layer of the encoder to the
size of the input image, with the number of output chan-
nels equal to the number of foreground classes (i.e.,
C�1). For example, for a four-class segmentation prob-
lem (C = 4): background, RV blood-pool, LV myocar-
dium, and LV blood-pool, the regularization network has
three output channels, predicting the truncated signed dis-
tance maps [Eq. (2)] computed from the binary masks of
the foreground classes: RV bood-pool, LV myocardium,
and LV blood-pool.

Figure 3 shows the regularization network added to the
bottleneck layer of existing FCN architectures. Network train-
ing loss is the weighted sum of the cross-entropy loss for seg-
mentation and the mean absolute difference (MAD) loss
between the predicted and the reference distance maps. The
network also predicts two scalars, uncertainties associated

with each task, which are subsequently used to weigh the two
losses as described in Section 2.C. Since our goal is to per-
form semantic segmentation, we do not need the distance
map prediction at inference time. Therefore, we remove the
regularization block after training, such that, the original
FCN architecture remains unchanged. Additionally, we found
that the quality (mean absolute difference) of the predicted
distance maps is insufficient for improving the predicted
segmentations from the standard path (see Fig. S2 in
supplement).

2.C. MTL using uncertainty-based loss weighting

We model the likelihood for a segmentation task as the
squashed and scaled version of the model output through a
softmax function: where r is a positive scalar, equivalent to
the temperature, for the defined Gibbs/Boltzmann distribu-
tion. The magnitude of r determines how uniform the dis-
crete distribution is, and hence relates to the uncertainty of
the prediction measured in entropy. The log-likelihood for
the segmentation task can be written as:

logpðy ¼ cjfWðxÞ; rÞ

¼ 1
r2

fWc ðxÞ � log
X
c0

exp
1
r2

fWc0 ðxÞ
� �

¼ 1
r2

ðfWc ðxÞÞ � log
X
c0

exp fWc0 ðxÞ
� �

� log

P
c0
exp 1

r22
fWc0 ðxÞ

� �
P
c0
exp fWc0 ðxÞ
� �� � 1

r2
2

� 1
r2

logSoftmax y; fWðxÞ� �� logr

(3)

where fWc ðxÞ is the c’th element of the vector fWðxÞ. In the
last step, a simplifying assumption 1

r

P
c0 expð 1r2 fWc0 ðxÞÞ� ðPc0 expðfWc0 ðxÞÞÞ

1
r2 , which becomes an equality when r?

1, has been made, resulting in a simple optimization objective
with improved empirical results.24

Similarly, for the regression task, we define our likelihood
as a Lapacian distribution with its mean and scale parameter
given by the neural network output:

pðyjfWðxÞ; rÞ ¼ 1
2r

exp � jy� fWðxÞj
r

� �
(4)

The log-likelihood for regression task can be written as:

logpðyjfWðxÞ; rÞ � � 1
r
jy� fWðxÞj � logr (5)

where r is the neural networks observation noise parameter
— capturing the noise in the output. A constant term has
been removed for simplicity, as it does not affect the opti-
mization.

For a network with two outputs — continuous output y1
modeled with a Laplacian likelihood, and a discrete output y2
modeled with a softmax likelihood — the joint loss is:

FIG. 3. Distance map regularizer added to the bottleneck layer. The number
of distance map channels is one (1) fewer than the number of classes. Seg-
mentation networks optionally use the pooling indices (yes/no) and skip con-
nections (yes/no), shown by dashed lines, during decoding: (a) DMR-
SegNet: pooling indices (yes), skip connections (no); (b) DMR-USegNet:
pooling indices (yes), skip connections (yes); and (c) DMR-UNet: pooling
indices (no), skip connections (yes). Uncertainties associated with each task
—S1 corresponding to the semantic segmentation and S2 corresponding to
the pixel-wise distance map regression are also predicted, then subsequently
used to scale the corresponding losses during network training.
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LðW1;W2; r1; r2Þ
¼ �logpðy1; y2 ¼ cjfW1ðxÞ; fW2ðxÞ; r1; r2Þ
¼ �logðpðy1jfW1ðxÞ; r1Þ � pðy2 ¼ cjfW2ðxÞ; r2ÞÞ
� 1

r1
L1ðW1Þ þ 1

r22
L2ðW2Þ þ logr1 þ logr2

(6)

where L1ðW1Þ ¼ jy1 � fW1ðxÞj is the MAD loss of y1 and
L2ðW2Þ ¼ �logSoftmaxðy2; fW2ðxÞÞ is the cross-entropy
loss of y2. To arrive at Eq. (3), the two tasks are assumed
independent. During the training, the joint likelihood loss
LðW1;W2; r1; r2Þ is optimized with respect to W1, W2 as
well as r1, r2.

From Eq. (6), we can observe that the losses for individual
tasks are weighted by the inverse of their corresponding
uncertainties (r1, r2) learned during the training. Hence, the
task with higher uncertainty will be weighted less and vice
versa. Furthermore, the uncertainties cannot grow too large
due to the penalty imposed by the last two terms in [Eq. (6)].
In practice, the network is trained to predict the log variance,
s:= logr, for numerical stability and avoiding any division by
zero, such that, the positive scale parameter, r, can be com-
puted via exponential mapping exp(s).

2.D. Clinical datasets

2.D.1. Left ventricle segmentation challenge (LVSC)

This study employed 200 de-identified cardiac MRI image
datasets from patients suffering from myocardial infraction
and impaired LV contraction available as a part of the STA-
COM 2011 Cardiac Atlas Segmentation Challenge pro-
ject37,38 database.* Cine-MRI images in short-axis and long-
axis views are available for each case. The images were
acquired using the Steady-State Free Precession (SSFP) MR
imaging protocol with the following settings: typical thick-
ness ≤10 mm, gap ≤2 mm, TR 30–50 ms, TE 1.6 ms, flip
angle 600, FOV 360 mm, spatial resolution 0.7031 to
2.0833 mm2=pixel and 256 9 256 mm image matrix using
multiple scanners from various manufacturers. Correspond-
ing reference myocardium segmentation generated from
expert analyzed three-dimensional (3D) surface finite ele-
ment model are available for 100 training cases throughout
the cardiac cycle. The reference segmentation for remaining
100 validation cases are retained by the organizers for an
unbiased comparison of segmentation results submitted by
the challenge participants.

2.D.2. Automated cardiac diagnosis challenge
(ACDC)

This dataset† is composed of short-axis cardiac cine-
MR images acquired for 150 patients divided into 5
evenly distributed subgroups: normal, myocardial

infarction, dilated cardiomyopathy, hypertropic cardiomy-
opathy, and abnormal right ventricle, available as a part
of the STACOM 2017 ACDC challenge.39 The acquisi-
tions were obtained over a 6-yr period using two MRI
scanners of different magnetic strengths (1.5 and 3.0 T).
The images were acquired using the SSFP sequence with
the following settings: thickness 5 mm (sometimes
8 mm), interslice gap 5 mm, spatial resolution 1.37–
1.68 mm2=pixel, 28–40 frames per cardiac cycle. Corre-
sponding manual segmentations for RV blood-pool, LV
myocardium, and LV blood-pool, performed by a clinical
expert for the end-systole (ES) and end-diastole (ED)
phases are provided for 100 training cases, which we use
for our cross-validation experiments. Manual segmenta-
tions for the remaining 50 test cases are kept privately
by the organizers, such that an unbiased comparison of
segmentation results can be performed upon submission.

2.E. Data preprocessing and augmentation

SimpleITK40 was used to resample short-axis images to
a common resolution of 1.5625 mm2=pixel and crop/zero-
pad to a common size of 192 9 192 and 256 9 256 for
LVSC and ACDC dataset, respectively. Image intensities
were clipped at 99th percentile and normalized to zero
mean and unit standard deviation. Each dataset was divided
into 80% train, 10% validation, and 10% test set with five
nonoverlapping folds for cross-validation. Train-validation-
test fold was performed randomly over the whole LVSC
dataset, whereas it was performed per subgroup (stratified
sampling) for the ACDC dataset to maintain even distribu-
tion of subgroups over the training, validation, and testing
sets. The training images were subjected to random similar-
ity transform with: isotropic scaling of 0.8 to 1.2, rotation
of 0o to 360o, and translation of �1=8th to þ1=8th of the
image size along both x- and y-axes. The training set for
LVSC and ACDC dataset included the original images
along with augmentation of two and four randomly trans-
formed versions of each image, respectively. We heavily
augment the ACDC dataset, as the labels are available only
for the ES and ED phases, whereas, lightly augment the
LVSC dataset, as the labels are available throughout the
cardiac cycle.

2.F. Network training and testing details

Networks implemented in PyTorch‡ were initialized with
the Kaiming uniform initializer41 and trained for 30 and 100
epochs for LVSC and ACDC dataset, respectively, with batch
size of 15 images. RMS prop optimizer42 with a learning rate
of 0.0001 and 0.0005 for single- and multi-task networks,
respectively, decayed by 0.99 every epoch was used. We
saved the model with best average Dice coefficient on the val-
idation set, and evaluated on the test set.

*http://www.cardiacatlas.org/challenges/lvsegmentation challenge/
†https://www.creatis.insalyon.fr/Challenge/acdc/databases.html ‡https://github.com/pytorch/pytorch
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Networks were trained on NVIDIA Titan Xp GPU. The
distance map threshold was selected empirically and set to a
large value of 250 pixels, that is, full distance map. The
cross-entropy and the MAD loss were initialized with equal
weights of 1.0, such that, the optimal weighting was learned
automatically. The auxillary task of distance map regression
was removed after the network training. The obtained 2D
slice segmentations were rearranged into a 3D volume, and
the largest connected component for each heart chamber was
retained to yield the final segmentation. Model complexity
and average timing requirements for training and testing the
models is shown in Table I.

2.G. Evaluation metrics

We use overlap and surface distance measures to evaluate
the segmentation. Additionally, we evaluate the clinical
indices associated with the segmentation.

2.G.1. Dice and Jaccard coefficients

Given two binary segmentation masks, A and B, the Dice
and Jaccard coefficient are defined as:

Dice ¼ 2jA \ Bj
jAj þ jBj ; Jaccard ¼ jA \ Bj

jA [ Bj (7)

where |�| gives the cardinality (i.e. the number of non-zero
elements) of each set. Maximum and minimum values (1.0
and 0.0, repectively) for Dice and Jaccard coefficient occur
when there is 100% and 0% overlap between the two binary
segmentation masks, respectively.

2.G.2. Mean surface distance and Hausdorff
distance

Let, SA and SB, be surfaces (with NA and NB points,
respectively) corresponding to two binary segmentation
masks, A and B, respectively. The mean surface distance
(MSD) is defined as:

MSD ¼ 1
2

1
NA

X
p2SA

dðp; SBÞ þ 1
NB

X
q2SB

dðq; SAÞ
 !

(8)

Similarly, Hausdorff distance (HD) is defined as:

HD ¼ max max
p2SA

dðp; SBÞ;max
q2SB

dðq; SAÞ
� �

(9)

where

dðp; SÞ ¼ min
q2S

dðp; qÞ

is the minimum Euclidean distance of point p from the points
q 2 S. Hence, MSD computes the mean distance between the
two surfaces, whereas, HD computes the largest distance
between the two surfaces, and is sensitive to outliers.

2.G.3. Ejection fraction and myocardial mass

Ejection Fraction (EF) is an important cardiac parameter
quantifying the cardiac output. EF is defined as:

EF ¼ EDV� ESV
EDV

� 100% (10)

where EDV is the end-diastolic volume and ESV is the end-
systolic volume. Similarly, the myocardial mass can be com-
puted from the myocardial volume as:

Myo-Mass ¼ Myo-Volumeðcm3Þ � 1:06ðgram=cm3Þ
(11)

The correlation coefficients for the EF and myocardial mass
computed from the ground-truth vs those computed from the
automatic segmentation is reported. Correlation coefficient
of +1 (�1) represents perfect positive (negative) linear rela-
tionship, whereas that of 0 represents no linear relationship
between two variables.

2.G.4. Limits of agreement

To compare the clinical indices computed from the
ground-truth vs those obtained from the automatic segmenta-
tion, we take the difference between each pair of the two
observations. The mean of these differences is termed as bias,
and the 95% confidence interval, mean � 1.96 9 standard
deviation (assuming a Gaussian distribution), is termed as
limits of agreement (LoA).

3. RESULTS

3.A. Segmentation and clinical indices evaluation

The proposed distance map regularized (DMR) SegNet,
USegNet, and UNet models along with the baseline models
were trained for the joint segmentation of RV blood-pool, LV
myocardium, and LV blood-pool from the ACDC challenge
dataset. The provided reference segmentation and the corre-
sponding automatic segmentation obtained from the DMR-
UNet model for a test patient is shown in Fig. 1. Automatic

TABLE I. Model complexity, training, and testing time. The model size for
DMR networks are equivalent to corresponding baseline FCN architectures
during test time.

Train time
(min/epoch)

Test time
(ms/volume)

#Parameters
(� 106)

ACDC LVSC ACDC LVSC Train Test

SegNet 2.49 14.91 70 67 2.96 2.96

USegNet 2.41 14.49 70 67 3.75 3.75

UNet 2.65 15.50 72 68 4.10 4.10

DMR-SegNet 4.44 20.57 70 (157) 63 (94) 3.56 2.96

DMR-USegNet 4.84 19.03 73 (158) 65 (96) 4.35 3.75

DMR-UNet 4.85 21.16 75 (160) 67 (97) 4.70 4.10

The inference time for DMR networks without removing the regularization block
are shown in brackets.
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segmentation obtained from all networks, for ED and ES
phases, are evaluated against the reference segmentation and
summarized in Table II(a); also shown is the evaluation of
subsequently computed clinical indices in Table II(b).

We observe consistent improvement in the average seg-
mentation performance of the models after the DM-regular-
ization. Specifically, there is statistically significant
improvement§ on several segmentation metrics for all evalu-
ated models. Same results manifest onto the clinical indices
with better correlation and LoA on both EF and myocardium
mass. Furthermore, the DMR-UNet model outperforms other
evaluated networks in many segmentation metrics.

To further analyze the improvement in segmentation per-
formance, we performed a regional analysis by subdividing
the slices into apical (25% slices in the apical region and
beyond), basal (25% slices in the basal region and beyond),
and mid-region (remaining 50% mid slices), based on the ref-
erence segmentation. From Fig. 4(a), we can observe consis-
tent improvement in segmentation performance at the
problematic apical and basal slices39; however, due to the
small size of these regions, the improvement does not have a
large effect on the overall performance, though it is of signifi-
cance when constructing patient specific models of the heart
for simulation purposes.43 We postulate that the additional
constraint imposed by a very high negative distance assigned
to empty apical/basal slices prevents the network from over-
segmenting these regions, hence, improving the regional dice
overlap and effectively reducing the overall Hausdorff dis-
tance.

To study the effect of the distance map regularization
across the five patient subgroups, we plot the average Dice

coefficient for each subgroup computed for all six models in
Fig. 5. As expected, we observe the segmentation perfor-
mance is better for the normal patients in comparison to the
pathological cases. Furthermore, we observe consistent
improvement in segmentation performance after the distance
map regularization for all patient subgroups.

We segmented the heart structures from 50 patients ACDC
held-out test set and submitted to the challenge organizers.
Majority voting prediction of ensemble of DMR-UNet mod-
els trained for fivefold cross-validation followed by a 3D con-
nected component analysis yielded the final segmentation.
Table III shows the comparison of our segmentation results
against the top three methods submitted to the challenge.
Baumgartner et al.44 tested several architectures and found
that 2D U-Net with a cross-entropy loss performed the best.
Khened et al.45 used a 2D U-Net with dense blocks and an
inception first layer to obtain the segmentation. Isensee et al.
ensembled 2D and 3D U-Net architectures trained with a
Dice loss to obtain the best result in the challenge. Our 2D
DMR-UNet model is able to perform as good or better than
the other two 2D methods; however, the combination of 2D
and 3D context has marginal improvement in the Dice over-
lap metric. Based on this observation, we believe the ensem-
ble of 2D and 3D DMR-UNet model should be able to
perform as good or better than,46 which is not the main objec-
tive of this work. Nonetheless, we can observe the constraint
imposed by the DM regularization is successful in reducing
the errors in apical/basal regions, manifested in the improved
Hausdorff distance.

Table IV shows the segmentation performance evaluated
on the LVSC dataset, demonstrating superior performance of
the DM regularized models over their baseline. Specifically,
there is statistically significant improvement on the Dice and

TABLE II. Evaluation of the average segmentation results on ACDC dataset for RV blood-pool, LV myocardium, and LV blood-pool (mean value reported),
obtained from all networks against the provided reference segmentation.

End diastole (ED) End systole (ES)

SN DMR SN USN DMRUSN UNet DMRUNet SN DMR SN USN DMRUSN UNet DMRUNet

(a) Evaluation of Average (across all heart chambers) Segmentation Results

Dice (%) 91.1 91.7** 91.5 92.0** 91.6 92.2** 87.3 88.0* 87.7 88.7** 87.2 88.8*

Jaccard (%) 84.0 85.1** 84.7 85.5** 85.0 85.9** 78.1 79.3* 78.7 80.3** 78.3 80.4*

MSD (mm) 0.55 0.53* 0.58 0.52* 0.54 0.53* 0.92 0.85 0.92 0.84 1.08 0.83

HD (mm) 10.26 9.87 10.26 9.67 10.03 9.52 11.33 10.31* 11.66 10.91 12.61 10.96*

Correlation coefficient Bias+LOA

SN
DMR
SN USN

DMR
USN UNet

DMR
UNet SN DMR SN USN DMRUSN UNet DMRUNet

(b) Evaluation of the Clinical Indices

LV EF 0.939 0.947 0.944 0.970 0.962 0.963 1.00 (13.15) 0.31 (12.44) 0.58 (12.57) �0.42 (9.24) 0.31 (10.41) 0.40 (10.40)

RV EF 0.874 0.871 0.866 0.895 0.856 0.870 1.04 (17.40) 1.77 (17.34) 0.85 (17.40) 0.38 (15.42) 0.09 (18.94) 0.29 (18.30)

Myo Mass 0.948 0.970 0.958 0.973 0.933 0.978 3.10 (32.94) �0.43 (25.17) 0.35 (29.65) 0.21 (23.89) 2.85 (37.39) 0.80 (21.75)

The statistical significance of the results for DM regularized model compared against the baseline model are represented by * and ** for P-values < 0.05 and 0.005, respec-
tively. Also shown are the clinical indices evaluated for each heart chamber. The best performing model for each metric has been highlighted in bold. SN: SegNet, USN:
USegNet, UNet: UNet.
Best performing model for the ED and ES phases are shown in bold case.

§Wilcoxon signed-rank test performed for statistical significance test
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Jaccard metric for the ED phase. Furthermore, the correlation
and LoA for the myocardial mass improves after network reg-
ularization. The improvement in performance is consistent
across different heart regions as shown in Fig. 4(b).

We segmented the myocardium from the LVSC held-out
validation set of 100 patients. Majority voting prediction
from ensemble of DMR-UNet models trained for five-fold
cross-validation followed by a 3D connected-component
analysis yielded the final segmentation. Table V shows our
segmentation results (computed per slice) compared against
several other semi-/fully automatic algorithms. Reported seg-
mentation results are computed against the consensus seg-
mentation (CS�) built from multiple challenge
submissions.38 Segmentation results for the four challenge
participants — AU,47 AO,48 SCR,49 and INR,50 and the

details on segmentation evaluation metrics can be found in
the challenge summary report.38 The AU method47 used the
interactive guide-point modeling technique to fit a finite ele-
ment cardiac model to the CMR data and required expert
approval of all slices and all frames. This segmentation was
provided as the reference segmentation to the challenge par-
ticipants. The CNN regression CNR method51 regressed the
endo- and epicardium contours in polar coordinates, while
manually eliminating the problematic slices beyond the apex
and base of the heart, hence, obtaining a good segmentation
result. The mean (std dev) of Jaccard coefficients computed
for our DMR-UNet model in apical, mid, and basal slices
are 0.66 (0.18), 0.77 (0.12), and 0.74 (0.17), respectively.
Our DMR-UNet model has similar performance to compet-
ing fully automatic segmentation algorithms based on the

FIG. 4. Mean and 95% bootstrap confidence interval for average Dice coefficient on apical, basal, and mid slices. Top: Average Dice coefficient for LV blood-
pool, LV myocardium, and RV blood-pool segmentation on ACDC dataset (100 volumes). Bottom: Dice coefficient for myocardium segmentation on LVSC data-
set (1050 volumes). SegNet: SN, DMR-SegNet: DMRSN, USegNet: USN, DMR-USegNet: DMRUSN, UNet: UN, DMR-UNet: DMRUN. [Color figure can be
viewed at wileyonlinelibrary.com]

FIG. 5. Mean and 95% bootstrap confidence interval of average Dice coefficient for segmentation results on ACDC dataset obtained from several architectures
divided according to the five subgroups: DCM — dilated cardiomyopathy, HCM — hypertrophic cardiomyopathy, MINF — previous myocardial infarction,
NOR — normal subjects, and RV— abnormal right ventricle. [Color figure can be viewed at wileyonlinelibrary.com]
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fully convolutional network FCN9 and the densely connected
FCN (DFCN)45 architectures. The DFCN method involves a
computationally expensive region of interest (ROI) identifi-
cation based on a Fourier transform applied across the car-
diac cycle, followed by the circular Hough transform;
whereas our method requires minimal pre-processing.

Lastly, the segmentation performance on the LVSC dataset
(Table V) is significantly lower than ACDC dataset
(Table III) due to large variability and noise exhibited by the
LVSC data as compared to the ACDC dataset.

3.B. Cross-dataset evaluation (transfer learning)

To analyze the generalization ability of our proposed dis-
tance map regularized networks, we performed a cross-data-
set segmentation evaluation. The networks trained on ACDC
dataset for fivefold cross-validation were tested on the LVSC
dataset, and vice versa; such that, the majority voting scheme
produced the final per-pixel segmentation. We observe a sig-
nificant boost in Dice coefficient of 5% to 12% for distance
map regularized networks over their baseline models when
trained on ACDC and tested on LVSC dataset (194 ED and
ES volumes), as shown in Table VI(a). Similarly, the dis-
tance map regularized models significantly outperform the
baseline models by 23–42% improvement in Dice coeffi-
cient, when trained on LVSC and tested on ACDC dataset
(200 ED and ES volumes), as shown in Table VI(b). The
improvement in generalization performance for the regular-
ization networks trained on LVSC dataset is higher, likely
due to the availability of large number of heterogeneous
training examples. Similar improvement can be observed in
the MSD and HD metric. We want to emphasize that our
networks are trained separately on each dataset and are com-
pletely unaware of the new data distribution, unlike a typical
domain adaptation52 setting. Nonetheless, the distance map
regularized networks are able to generalize better to a new
dataset compared to the baseline models.

We further analyzed the feature maps across different layers
of the baseline and distance map regularized networks (supple-
mentary material Fig. S3). We can observe the baseline models
preserve the intensity information and propagate it throughout
the network; hence, they are more sensitive to the dataset-
specific intensity distribution. In contrast, the multi-task

regularized networks focus more on the edges and other dis-
criminative features, producing sparse feature maps, while
ignoring dataset-specific intensity distribution. Moreover, from
the feature maps at the decoding layers, we observe a clear
delineation of several cardiac structures in the regularized net-
work, while those for the baseline models are less discrimina-
tive, and contain information about all structures present in the
image. Hence, we verify that MTL-based distance map regu-
larization helps the network learn generalizable features impor-
tant for the segmentation task, demonstrated by their excellent
transfer learning capabilities [see Supplementary Materials for
details on feature visualization (Fig. S3) and network learning
curves showing the robustness of distance map regularized
models against overfitting (Fig. S4)].

3.C. Comparison with models trained on different
loss functions

Several modifications to the categorical cross-entropy loss
have been proposed to improve segmentation results. A popu-
lar variant is weighted categorical cross-entropy, where the
loss contribution of each class is multiplied by a weight pro-
portional to the inverse frequency of that class in the training
set. We compute the weights as wc ¼

P
c
Nc

Nc
, where

c = {0,1,. . .,C�1} for C classes and Nc is the number of pix-
els of class c in the training set. The weights wc are then nor-
malized by their median value during weighted categorical
cross-entropy loss computation.

Similarly, Ronneberger et al.34 proposed a spatial weighting
scheme, where the pixels closer to segmentation boundaries
were assigned higher weights, to incentify the network to pro-
duce better segmentation results by avoiding misclassification
of boundary pixels. The spatial weight map is computed as:

wðxÞ ¼ wcðxÞ þ w0 � exp �ðd1ðxÞ þ d2ðxÞÞ2
2r2

 !
(12)

where wc is the weight map to balance the class frequencies,
and d1 and d2 are the distances to the border of nearest and
second nearest object classes. In our experiments, we set
w0 ¼ 1:0 and r = 5.0.

Table VII summarizes the segmentation results obtained on
ACDC dataset for UNet models trained on cross-entropy loss

TABLE III. Comparison of the segmentation results obtained from the DMR-UNet model against the top three ACDC challenge participants, evaluated on the
held-out 50 patient challenge test set.

End diastole (ED) End systole (ES) EF

LV RV Myo LV RV Myo
LV RV

Dice HD Dice HD Dice HD Corr Dice HD Dice HD Dice HD Corr Corr Corr

Baumgartner44 0.96 6.53 0.93 12.67 0.89 8.70 0.982 0.91 9.17 0.88 14.69 0.90 10.64 0.983 0.988 0.851

Khened46 0.96 8.13 0.94 13.99 0.89 9.84 0.990 0.92 8.97 0.88 13.93 0.90 12.58 0.979 0.989 0.858

Isensee46 0.97 7.38 0.95 10.12 0.90 8.72 0.989 0.93 6.91 0.90 12.14 0.92 8.67 0.985 0.991 0.901

DMR-UNet 0.96 6.05 0.94 9.52 0.89 7.92 0.989 0.92 8.16 0.88 13.05 0.91 8.39 0.987 0.989 0.851

The Dice metric, Hausdorff Distance (HD), and correlation of clinical indices for all three heart chambers is shown.
Best performing model for the ED and ES phases are shown in bold case.
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with several weighting schemes against the proposed DMR-
UNet model. Although class frequency weighted training has
been found to improve the performance of a model on limited
availability of examples for some classes, in our segmentation
problem, we have a large number of examples (pixels) for each
class. Furthermore, since the number of background pixels is
very high compared to other classes, the weight assigned to
background pixels is extremely low, hence discouraging the
model to segment ambiguous pixels as a background class,
resulting in degraded segmentation performance, as shown in
Table VII. Moreover, while the spatial weighting scheme only
provides a slight improvement over the unweighted cross-en-
tropy loss, there is good improvement in the distance metric
due to the emphasis on the boundary pixels. Nevertheless,
Table VII clearly shows that our proposed DMR-UNet model
significantly outperforms all other weighting schemes, yielding
highest overlap and lowest distance metrics.

4. DISCUSSION

We performed an extensive study on the effects of hyper-
parameters on the performance of the proposed regularization
framework. Here we summarize the effects of the learned vs
fixed task weighting, and various choices of the distance map
threshold. Furthermore, we analyzed the distribution of net-
work weights before and after regularization.

Task Weighting: At first, we initialized the weights for the
cross-entropy and MAD loss equally to 1.0. However, the
learned weights for the cross-entropy and MAD loss were
around 0.01 and 17, and 0.02 and 13 for ACDC and LVSC
dataset, respectively, for the best performing models on the
validation set.

To determine the effect of learned task weighting scheme
presented in Section 2.C, we analyzed the average Dice coef-
ficient of the test set segmentation results for both ACDC
(100 volumes) and LVSC (1050 volumes across the full car-
diac cycle) datasets with fixed vs learned weighting. From
Fig. 6, we can observe a significant improvement in average
Dice coefficient (based on the 95% bootstrap confidence
intervals) with learned weights compared to fixed (equal)
weighting. Since the scales of the two losses are different, the
equal weighting scheme emphasizes the distance map regres-
sion task more than it should, hence deteriorating the seg-
mentation performance. In contrast, the learned task
weighting scheme is able to automatically weigh the two
losses, bringing them to a similar scale, such that the two
tasks are given equal importance, ultimately improving the
segmentation performance.

Effect of Distance Map Threshold: We selected three
extreme values for the distance map threshold: 5, 60, and
250 pixels. The network weights for cross-entropy and MAD
loss were equally initialized to (1,1) and trained with auto-
matically learned task weighting for a fixed number of
epochs. The average Dice coefficient on the test-set obtained
from the best performing models on the validation-set across
five-fold cross-validation is summarized in Fig. 7. We
observe similar performance for different threshold values,T
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demonstrating the low sensitivity of the proposed method to
the distance map threshold. Hence, we decided to use a very
high threshold of 250 pixels, which is almost equivalent to
regressing the full distance map and neglecting this hyper-pa-
rameter.

Network Weight Distribution: We also analyzed the weight
distribution of the network before and after distance map reg-
ularization, as shown in the Supplementary Materials
(Fig. S5). We observe the number of non-zero weights
increase after the distance map regularization, hence, better

TABLE V. Comparison of the LV myocardium segmentation results on the LVSC validation set against the consensus segmentation (CS*) as described in.38

Method SA/FA Jaccard Sensitivity Specificity PPV NPV

AU47 SA 0.84 (0.17) 0.89 (0.13) 0.96 (0.06) 0.91 (0.13) 0.95 (0.06)

CNR51 SA 0.77 (0.11) 0.88 (0.09) 0.95 (0.04) 0.86 (0.11) 0.96 (0.02)

FCN9 FA 0.74 (0.13) 0.83 (0.12) 0.96 (0.03) 0.86 (0.10) 0.95 (0.03)

DFCN45 FA 0.74 (0.15) 0.84 (0.16) 0.96 (0.03) 0.87 (0.10) 0.95 (0.03)

DMR-UNet FA 0.74 (0.16) 0.85 (0.16) 0.95 (0.03) 0.86 (0.10) 0.95 (0.03)

AO48 SA 0.74 (0.16) 0.88 (0.15) 0.91 (0.06) 0.82 (0.12) 0.94 (0.06)

SCR49 FA 0.69 (0.23) 0.74 (0.23) 0.96 (0.05) 0.87 (0.16) 0.89 (0.09)

INR50 FA 0.43 (0.10) 0.89 (0.17) 0.56 (0.15) 0.50 (0.10) 0.93 (0.09)

The values for AU, AO, SCR, and INR are obtained from table II in,38 CNR from table III in Ref. [51], FCN from Table III in Ref. [9], and DFCN from table XII in Ref.
[45]. Values are provided as mean (standard deviation), and in descending order by Jaccard index. SA/FA—Semi/Fully-Automatic.

TABLE VI. Cross-dataset segmentation evaluation for LV myocardium segmentation (mean values reported).

End diastole (ED) End systole (ES)

SN DMR SN USN DMRUSN UNet DMRUNet SN DMR SN USN DMRUSN UNet DMRUNet

(a) Trained on ACDC and tested on LVSC (194 volumes)

Dice(%) 70.4 73.3** 68.3 76.6** 72.3 76.7** 68.0 71.9** 65.5 74.9** 69.7 76.4**

Jaccard(%) 55.6 58.9** 53.6 62.9** 58.0 63.1** 53.3 58.1** 50.8 61.5** 55.5 63.1**

MSD(mm) 2.68 2.07** 3.33 1.80** 2.46 1.80** 3.56 2.93** 4.19 2.58** 3.49 2.35**

HD(mm) 25.01 22.44** 26.93 20.33** 24.61 20.16** 25.96 22.62** 27.37 21.67** 25.68 20.98**

End diastole (ED) End systole (ES)

SN DMR SN USN DMRUSN UNet DMRUNet SN DMR SN USN DMRUSN UNet DMRUNet

(b) Trained on LVSC and tested on ACDC (200 volumes)

Dice(%) 69.5 78.4** 62.5 80.1** 62.1 80.2** 57.7 77.6** 51.9 79.3** 50.3 79.1**

Jaccard(%) 56.5 66.3** 49.3 68.2** 49.3 68.5** 45.4 65.3** 40.1 67.3** 38.8 67.1**

MSD(mm) 4.92 1.77** 6.75 1.30** 6.29 1.59** 9.59 2.53** 13.27 2.35** 10.97 2.52**

HD(mm) 26.04 17.06** 29.08 13.93** 29.50 14.16** 35.13 19.25** 39.60 18.77** 37.44 19.58**

The statistical significance of the results for DM regularized model compared against the baseline model are represented by * and ** for P-values < 0.01 and 0.001, respec-
tively. SN: SegNet, USN: USegNet, UNet: UNet.
Best performing model for the ED and ES phases are shown in bold case.

TABLE VII. Evaluation of the segmentation results on ACDC dataset for RV blood-pool, LV myocardium, and LV blood-pool (mean values reported), obtained
from different weighting schemes of the categorical cross-entropy loss function.

End diastole (ED) End systole (ES)

None Class Spatial Spatial w/Class DMRUNet None Class Spatial Spatial w/Class DMRUNet

Dice (%) 91.6 89.2 91.7 91.8 92.2 87.2 84.7 88.1 87.8 88.8

Jaccard (%) 85.0 81.2 85.1 85.2 85.9 78.3 74.6 79.3 79.0 80.4

MSD (mm) 0.54 0.71 0.53 0.51 0.53 1.08 1.25 0.89 0.95 0.83

HD (mm) 10.03 10.48 10.06 9.99 9.52 12.61 12.60 11.31 12.16 10.96

UNet model trained with cross-entropy loss: without any weighting, class frequency weighting, spatial weighting (with uniform class weight), and spatial with class fre-
quency weighting, compared against the proposed DMR-UNet model.
Best performing model for the ED and ES phases are shown in bold case.
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utilizing the network capacity. A similar flattening of network
weight histogram has been reported for the dropout regular-
ization and Bayesian neural networks,53 both reducing the
overfitting and hence improving generalization. Specifically,
the network weights are randomly dropped during dropout,
forcing the network to use the remaining weights to identify
the patterns in data (spreading the weight histogram), hence
creating an ensemble effect with reduced overfitting and
improved generalization. We observe a similar pattern in the
weight distribution after the distance map regularization.

5. CONCLUSIONS

In this work, we proposed and implemented a MTL-based
regularization method for fully convolutional networks for
semantic image segmentation and demonstrated its benefits
in the context of cardiac MR image segmentation. To imple-
ment the proposed method, we appended a decoder network
at the bottleneck layer of existing FCN architectures to per-
form an auxiliary task of distance map prediction, which is
removed after training.

We automatically learned the weighting of the tasks based
on their uncertainty. As the distance map contains robust
information regarding the shape, location, and boundary of the
object to be segmented, it facilitates the FCN encoder to learn
robust global features important for the segmentation task.

Our experiments verify that introducing the distance map
regularization improves the segmentation performance of
three FCN architectures for both binary and multi-class

segmentation across two publicly available cardiac cine MRI
datasets featuring significant patient anatomy and image vari-
ability. Specifically, we observed consistent improvement in
segmentation performance in the challenging apical and basal
slices in response to the soft-constraints imposed by the dis-
tance map regularization. We also showed consistent segmen-
tation improvement on all five patient pathology in the
ACDC dataset. Furthermore, these improvements were also
reflected on the computed clinical indices important for the
diagnosis of various heart conditions. Lastly, we demon-
strated the proposed regularization significantly improved the
generalization ability of the networks on cross-dataset seg-
mentation (transfer learning), without being aware of the new
data distribution, with 5% to 42% improvement in average
Dice coefficient over the baseline FCN architectures.
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Figure S1: Ground-truth and automatic segmentation
obtained from all trained models for a test patient. In each
subfigure, the segmentation obtained from the baseline and
regularized model are overlaid onto the volume and shown in
first and third rows, respectively; corresponding
disagreement (in black) between the obtained segmentations
and the ground-truth is shown in second and fourth rows,
respectively.
Figure S2: Visualization of (a) the segmentation obtained by
thresholding the predicted distance map and (b) absolute
error between the ground-truth and predicted distance maps
for all chambers. Shown is only a cropped region around the
heart, the error in predicted distance map is higher for the
regions farther from the heart.
Figure S3: Feature maps visualized for the UNet (left
column) and DMR-UNet (right column) model. We can

observe the UNet model preserves the intensity information
and propagates it throughout the network, hence, is more
sensitive to the dataset-specific intensity distribution. In
contrast, the DMR-UNet model focuses more on the edges
and other discriminative features, producing sparse feature
maps, while ignoring dataset-specific intensity distribution.
However, the results obtained for intra-dataset segmentation
(shown here for ACDC dataset) is similar for both models,
whereas, there is a significant improvement in cross-dataset
segmentation after distance map regularization.
Figure S4: Mean and 95% bootstrap confidence interval for
training and validation losses (a and b), and the learned
weights for cross-entropy and mean absolute difference
losses (c), on ACDC and LVSC dataset across five-fold
cross-validation. Since the cross-entropy loss is harder to
interpret, we plot the corresponding dice loss computed
during training and validation. We can observe lower
difference between the training and validation dice loss for
the distance map regularized models, demonstrating their
ability to prevent overfitting.
Figure S5: Weights distribution before and after distance
map regularization for models trained across fivefold cross-
validation. We can observe the number of non-zero weights
increases after the distance map regularization, hence, better
utilizing the network capacity.
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(a) Input volume (top row) with overlaid ground-truth segmentation (bottom row).

(b) Segmentation results for SegNet (top two rows) and DMR-SegNet (bottom two rows).

(c) Segmentation results for USegNet (top two rows) and DMR-USegNet (bottom two rows)

(d) Segmentation results for UNet (top two rows) and DMR-UNet (bottom two rows)

Figure S1: Ground-truth and automatic segmentation obtained from all trained models for a test patient. In each sub-figure,
the segmentation obtained from the baseline and regularized model are overlaid onto the volume and shown in first and
third rows, respectively; corresponding disagreement (in black) between the obtained segmentations and the ground-truth is
shown in second and fourth rows, respectively.
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(a) Input volume with: (top row) ground-truth segmentation overlaid, (middle row) segmentation obtained from the DMR-UNet

model, and (bottom row) segmentation obtained after thresholding the predicted distance map at zero levelset.

(b) Absolute difference between the ground-truth and predicted distance maps. First, second, and third row show the error in

RV, LV myocardium, and LV bloodpool, respectively.

Figure S2: Visualization of (a) the segmentation obtained by thresholding the predicted distance map and (b) absolute error
between the ground-truth and predicted distance maps for all chambers. Shown is only a cropped region around the heart,
the error in predicted distance map is higher for the regions farther from the heart.
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(a) From left to right: input image, ground-truth, and automatic segmentation overlay.

(b) 32 feature maps before first max-pooling operation.

(c) 256 feature maps from the bottle-neck layer.

(d) 32 feature maps before the final 1×1 convolution.

Figure S3: Feature maps visualized for the UNet (left column) and DMR-UNet (right column) model. We can observe
the UNet model preserves the intensity information and propagates it throughout the network, hence, is more sensitive to
the dataset-specific intensity distribution. On the other hand, the DMR-UNet model focuses more on the edges and other
discriminative features, producing sparse feature maps, while ignoring dataset-specific intensity distribution. However, the
results obtained for intra-dataset segmentation (shown here for ACDC dataset) is similar for both models, whereas, there is
a significant improvement in cross-dataset segmentation after distance map regularization.
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(a) Training and validation Dice loss for segmentation task. ACDC (left two columns) and LVSC (right two columns).
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(b) Training and validation mean absolute difference error
for distance map regression task. ACDC (left) and LVSC
(right).

(c) Log Weights learned for cross-entropy and mean absolute
difference losses. ACDC (left) and LVSC (right).

Figure S4: Mean and 95% bootstrap confidence interval for training and validation losses (a and b), and the learned weights
for cross-entropy and mean absolute difference losses (c), on ACDC and LVSC dataset across five-fold cross-validation. Since
the cross-entropy loss is harder to interpret, we plot the corresponding dice loss computed during training and validation.
We can observe lower difference between the training and validation dice loss for the distance map regularized models,
demonstrating their ability to prevent overfitting.

iv



(a) Weights distribution for SegNet and DMR-SegNet models.

(a) Weights distribution for USegNet and DMR-USegNet models.

(a) Weights distribution for UNet and DMR-UNet models.

Figure S5: Weights distribution before and after distance map regularization for models trained across five-fold cross-
validation. We can observe the number of non-zero weights increases after the distance map regularization, hence, better
utilizing the network capacity.
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	 1.INTRODUCTIONMag�netic res�o�nance imag�ing (MRI) is the stan�dard-of-care imag�ing modal�ity for non-in�va�sive car�diac diag�no�sis, due to its high con�trast sen�si�tiv�ity to soft tis�sue, good image qual�ity, and lack of expo�sure to ion�iz�ing ...

