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ABSTRACT Tuberculosis (TB) drug resistance is a worldwide public health problem. It decreases the
likelihood of a positive outcome for the individual patient and increases the likelihood of disease spread.
Therefore, early detection of TB drug resistance is crucial for improving outcomes and controlling disease
transmission. While drug-sensitive tuberculosis cases are declining worldwide because of effective treat-
ment, the threat of drug-resistant tuberculosis is growing, and the success rate of drug-resistant tuberculosis
treatment is only around 60%. The TB Portals program provides a publicly accessible repository of TB case
data with an emphasis on collecting drug-resistant cases. The dataset includes multi-modal information such
as socioeconomic/geographic data, clinical characteristics, pathogen genomics, and radiological features.
The program is an international collaboration whose participants are typically under a substantial burden
of drug-resistant tuberculosis, with data collected from standard clinical care provided to the patients.
Consequentially, the TB Portals dataset is heterogenous in nature, with data representing multiple treatment
centers in different countries and containing cross-domain information. This study presents the challenges
and methods used to address them when working with this real-world dataset. Our goal was to evaluate
whether combining radiological features derived from a chest X-ray of the host and genomic features from the
pathogen can potentially improve the identification of the drug susceptibility type, drug-sensitive (DS-TB)
or drug-resistant (DR-TB), and the length of the first successful drug regimen. To perform these studies,
significantly imbalanced data needed to be processed, which included a much larger number of DR-TB
cases than DS-TB, many more cases with radiological findings than genomic ones, and the sparse high
dimensional nature of the genomic information. Three evaluation studies were carried out. First, the DR-
TB/DS-TB classification model achieved an average accuracy of 92.4% when using genomic features alone
or when combining radiological and genomic features. Second, the regressionmodel for the length of the first
successful treatment had a relative error of 53.5% using radiological features, 25.6% using genomic features,
and 22.0% using both radiological and genomic features. Finally, the relative error of the third regression
model predicting the length of the first treatment using the most common drug combination varied depending
on the feature type used. When using radiological features alone, the relative error was 17.8%. For geno-
mic features alone, the relative error increased to 19.9%. The model had a relative error of 19.0% when both
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radiological and genomic features were combined. Although combining radiological and genomic features did not
improve upon the use of genomic features when classifying DR-TB/DS-TB, the combination of the two feature types
improved the relative error of the predictive model for the length of the first successful treatment. Furthermore, the
regressionmodel trained on radiological features achieved the best performancewhen predicting the treatment length
of the most common drug combination.

INDEX TERMS Tuberculosis, radiomics, genomics, TB Portals, machine learning, drug resistance.

I. INTRODUCTION
Despite recent reductions in tuberculosis incidence (TB) and
mortality, the emergence of drug-resistant Mycobacterium
tuberculosis is a critical global health issue. Failure to identify
and appropriately treat patients with drug-resistant TB can
lead to increased mortality, nosocomial outbreaks, and the
spread of drug resistance. The TB Portals program is an
international collaboration that currently includes 16 coun-
tries under a heavy burden of drug-resistant tuberculosis [1].1

Though drug-sensitive tuberculosis numbers are diminishing
worldwide, and the effectiveness of treatment is above 90%,
drug-resistant tuberculosis cases are increasing, and the suc-
cessful treatment percentage of DR-TB is about 60% [2].
To address this issue, the TB Portals program was estab-
lished to serve as a research resource with an emphasis
on the collection of DR-TB case data. The TB Portals
database is an anonymized patient-centric resource con-
taining multi-domain data, including patient images (chest
X-rays and computed tomography scans), derived radiolog-
ical features, socio-economical information, and pathogen
single-nucleotide polymorphisms associated with drug resis-
tance. Data is collected during standard patient care, curated,
and made available to the research community. The program
has collected and processed genome sequences for more
than 2200 Mycobacterium tuberculosis (M. tuberculosis)
samples as part of this international collaboration, informa-
tion that is usually not collected as part of standard patient
care.

Previous analyses of TB Portals data include country-
specific studies of DR-TB molecular evolution [3], genomic
evaluation of relapse/reinfection status [4], polyclonal infec-
tion among lung resection samples [5], clinical metadata
correlation with treatment outcomes [6], and prediction of
drug susceptibility from patient imaging data via machine
learning [7], [8], [9], [10], [11].

Analyzing relevant multi-modal information extracted
from large datasets can be challenging. Many studies have
investigated different statistical and computational methods
to effectively address the challenges in big, high dimen-
sional datasets [12], [13], [14], [15], [16]. The present study
describes the challenges when integrating radiological and
genomic information using not only big but also multi-
source, cross-domain, and real-world data. In particular, redu-
cing the genomic data to a tractable set of variables to manage

1https://tbportals.niaid.nih.gov/

its sparse and high dimensional nature is a point of discussion.
In addition, a dimensionality reduction of radiological find-
ings is performed by grouping features that share lower-level
information into broader classes to make the statistical anal-
ysis and machine prediction processes more efficient. Later,
an illustration is provided on how machine learning methods
can be applied to unbalanced data, considering that the TB
Portals data is explicitly biased toward DR-TB cases.

Using TB Portals data, this study applied machine learning
to understand the relationship between the host’s radiolog-
ical findings and the pathogen’s genomic information. The
underlying hypothesis was that the two information sources
are complementary and that the radiological information
may improve the performance of predictive models that use
the pathogen’s genetic information. Radiological information
consisted of clinical findings identified by a radiologist in
frontal chest X-ray imaging. The coarse location of each
finding within the lung was also noted (lungs are divided
into six regions). Findings included lung cavity (of various
sizes), nodules (of various sizes), infiltrate density, presence
of mediastinal lymph nodes, presence of calcified nodules,
and others. In addition, the annotations at the overall lung
level, such as the overall percentage of abnormal volume and
percentage of pleural effusion of the involved hemithorax,
were also provided. Genomic information captured a detailed
breakdown of the pathogen genomic variance, such as gene
mutation variants.

Three evaluation studies were conducted. The first inves-
tigated the usefulness of radiological, host, and genomic
pathogen features for the classification of drug susceptibility,
DR-TB or DS-TB. The second investigated the usefulness of
these features for regression, estimating the length of the first
successful treatment period. The third investigated the treat-
ment period of the most common drug combination. In three
studies, not all patient cases included all data elements, which
is a common characteristic of real-world data. Therefore,
three subsets were defined, consisting of 5935 patients with
radiological data, 2161 patients with pathogen genomic data,
and 1272 patients with both radiological and genomic data,
respectively.

The rest of the paper is organized as follows: First, the radi-
ological and genomic information, feature encoding, and the
methodology used to address data imbalance are described.
Then, the statistical analysis and machine learning models
developed for the three tasks drug susceptibility classification
and treatment period prediction are presented. The following
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sections report the experimental results and discuss the limita-
tions of workingwith a real-world heterogeneous dataset. The
final section provides a summary of the challenges encoun-
tered and the results of the predictive models.

II. METHODS
A. RADIOLOGICAL AND GENOMIC INFORMATION
A dataset of 5935 patients with radiological findings based
on chest X-rays provided by the TB Portals program was
used. Each patient record included radiological findings from
a frontal chest X-ray, as determined by a single radiologist.
Radiological findings included chest radiography patterns
such as the overall percentage of abnormal volume, the
pleural effusion percentage of the involved hemithorax and
whether the pleural effusion is bilateral, the presence of medi-
astinal lymphadenopathy, cavities, infiltrates, calcified and
partially calcified or non-calcified nodules, and the presence
of other non-TB abnormalities, including affected sextants.
The 5935 patients were comprised of 4028 DR-TB cases
and 1907 DS-TB cases.

The TB Portals Steering Committee directed the sequenc-
ing and genomic study of M. tuberculosis found in patients
to enhance the understanding of the molecular basis of the
disease, as genomic variations are known to be related to
the resistance of M. tuberculosis to common antibiotics [17],
[18], [19], [20], [21], [22]. In addition, genomic information
captures a detailed breakdown of the pathogen genomic vari-
ance, such as gene mutation variants. Therefore, a dataset of
2161 patients with pathogen genomic information, comprised
of 1614 DR-TB cases and 547 DS-TB cases, was used in
this study. In addition, genomic analysis results by TB Pro-
filer [23] for patients that have both imaging and genomic
data were also included.

Data usage was exempt from local institutional review
board review because the data is publicly available from the
TB Portals program. The TB Portals program participants
are responsible for ensuring compliance with their countries’
laws, regulations, and ethical considerations.

B. FEATURE ENCODING
The feature set included 18 radiological features and
43 genomic variants, including nine from the TB Portals
genomic pipeline and 34 from TB Profiler. Because the radio-
logical and genomic features were categorical data, they were
converted to a numeric format before being used as input to
the machine learning models. The categorical features used
in this study were all nominal, so one-hot encoding was used
to encode these features.

As some of the radiological features referred to the size
of clinical findings, e.g., large cavity, large nodule, or high-
density infiltrate, all of them were combined into a single
class based on the type of finding. This enabled the use of spe-
cific domain knowledge to perform dimensionality reduction,
reducing the original 25-dimensional feature vector to 18.

The genomic variables in the dataset included the single
nucleotide polymorphism (SNP) detected at one nucleotide
due to a mutation at that location. As a result, the genomic
variable, i.e., gene_snp_mutations, was high dimensional.
Each patient could have a combination of SNPs, among
99 possible combinations. To reduce the dimensionality of
the sparse one-hot encoded matrix, the SNPs were combined
into their unique individual genes. Thus, a total of nine
unique genes were obtained after encoding. Next, to encode
the genomic features in the TB Profiler data, there were
2218 variables in the TB Profiler data. Each variable had
two parts, representing the gene and variant names. The high
dimensional variables were reduced by aggregating them at
the gene level. To encode an aggregated gene, if there was any
variant in the gene, the gene was encoded as one; otherwise,
as zero. So, 34 gene names were present after encoding.
Therefore, 43 genomic features (nine from TB Portals and
34 from TB Profiler) were used for analysis and prediction.

C. CORRELATION AND STATISTICAL ANALYSIS
The relationship between radiological and genomic features
was investigated by computing the Pearson correlation (R).
A correlation value |R| ≤ 0.25 was considered a weak cor-
relation, 0.25 ≤ |R| ≤ 0.50 was a mild correlation, and
|R| ≥ 0.50 was a strong correlation. Pearson’s chi-squared
test measured the statistical significance of radiological and
genomic features and the type of resistance. The null hypoth-
esis stated that there is no relationship between the radiolog-
ical/genomic features and the type of resistance. In addition,
a Mann-Whitney U Test was used to measure the statistical
significance of differences in the treatment period between
radiological and genomic features. The null hypothesis stated
that no significant difference in the means of the treat-
ment periods exists for radiological and genomic features.
A p-value < 0.05 was considered statistically significant.

D. HANDLING IMBALANCED DATA
The dataset included 4028 DR-TB and 1907 DS-TB cases
and was thus biased toward DR-TB. It is known that machine
learning is sensitive to the ratio of different classes’ sample
sizes. The problem is that a model can achieve high accuracy
by consistently predicting the majority class. Imbalanced
datasets create challenges for predictive modeling, but they
are a common and anticipated problem because they are typi-
cal of real-world applications. Several approaches have been
followed to balance a dataset, such as the down-sampling of
the over-represented class and the over-sampling of the under-
represented class. Down-sampling removes samples from the
over-represented class until the classes have an equal distri-
bution. However, removing samples from the original dataset
could result in the loss of useful information. Therefore, the
Synthetic Minority Oversampling Technique (SMOTE) [24]
is a popular method for synthesizing new samples for the
minority class. In this study, a variant of SMOTE referred
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to as SVM-SMOTE [25] was used to balance the class
distribution.

E. MACHINE CLASSIFICATION OF DRUG-SENSITIVE AND
DRUG-RESISTANT TB
In this evaluation study, the radiological findings for chest
X-ray images and the gene variants in TB Portals were used to
assess their role in discriminating between drug-resistant and
drug-sensitive TB. A cohort was formed using the following
inclusion and exclusion criteria: cases with available chest
X-ray annotations and genomic information, Poly DR and
Pre-XDR cases were excluded as there were very few sam-
ples, all other drug-resistant classes (MDR non-XDR, Mono
DR, XDR) were combined into a single DR-TB class, and
only new, no follow-up or relapse patients were used for anal-
ysis. Under these conditions, from over 13000 patient cases,
cohorts consisting of 5935 patients with radiological findings
from chest X-rays, 2161 patients with pathogen genomic
information, and only 1272 patients with both radiological
and genomic data were identified.

Next, a machine learning classifier, Random Forest [26],
was trained to discriminate between DR-TB and DS-TB.
Different feature combinations were used to compare the
contributions of various features for classifying DR-TB and
DS-TB. The dataset included 4028 DR-TB and 1907 DS-
TB patients. It was thus biased toward DR-TB. Therefore,
the classes were balanced by synthesizing new samples for
the minority class. In addition, the feature selection was
performed via the Random Forest algorithm’s built-in feature
importance, which computed the Gini importance or infor-
mation gain. Random Forest is a set of decision trees in
which each tree consists of nodes and leaves. In each node,
a selected feature is used to decide how to divide the dataset
into two separate groups. The features for internal nodes are
selected based on a criterion which is typically Gini impurity
or information gain for classification tasks. One can measure
how each feature decreases the impurity of the split; the
feature with the highest decrease is selected for the internal
node. The average decrease over all trees in the forest is then
used as the measure of the feature importance. Finally, the
classification performance was evaluated based on a five-fold
cross-validation.

F. MACHINE PREDICTION OF THE PERIOD OF THE FIRST
SUCCESSFUL TREATMENT
Machine learning with radiological and genomic informa-
tion was used to predict the period of successful treatment.
Similar to the first study, the relationship between radio-
logical/genomic features and the treatment period (TP) was
investigated. A cohort was formed using the following crite-
ria: cases with available chest X-ray annotations and genomic
information, Poly DR and Pre-XDR cases were excluded as
there were very few samples, treatment outcome of ‘‘Cured’’
was included, and records of treatment periods greater than
30 days were included. As a result, cohorts consisting of

2151 patients with radiological findings from chest X-rays,
1023 patients with pathogen genomic information, and only
818 patients with both radiological and genomic data were
identified. Thus, from a big dataset with several thousand
patient cases, after applying the selection criteria and due
to the fact that the set of patients with genomic data only
partially overlaps with the set of patients with radiological
data, the usable dataset was reduced to only 818 cases.

Next, a Gradient Boosting regression model was trained to
predict the first successful drug regimen length using radio-
logical and genomic features. Gradient Boosting calculates
the mean value of the reference values and makes initial
predictions [27]. Then, using the predictions, it calculates the
gradients, which are the differences between the predicted
and actual values. Instead of training a new estimator on the
data to predict the target, it trains an estimator to predict the
gradients of the initial predictor. This predictor is usually a
decision tree. To make predictions, it adds the base estima-
tor’s value onto the decision tree’s predicted gradient value
of the instance. It then calculates the gradients again between
the predicted and actual values. This process is repeated until
a certain threshold is reached or the gradient difference is
minimal.

G. MACHINE PREDICTION OF THE TREATMENT PERIOD
OF THE MOST COMMON DRUG COMBINATION
A cohort was formed using the following criteria: cases
with available chest X-ray annotations and genomic infor-
mation, Poly DR and Pre-XDR cases were excluded as
there were very few samples, and records of treatment peri-
ods greater than 30 days were included. These selection
criteria resulted in cohorts comprising 3171 patients with
radiological findings, 1426 patients with pathogen genomic
information, and 1120 patients with both radiological and
genomic data. A long list of drug combinations was found
in the TB Portals data: 29 drug combinations to treat DS-TB
and 728 drug combinations to treat DR-TB. However, only
the most common drug combination (Ethambutol, Isoniazid,
Pyrazinamide, Rifampicin) had over a thousand samples.
The second (Ethambutol, Isoniazid, and Rifampicin) and
third (Bedaquiline, Clofazimine, Cycloserine, Levofloxacin,
and Linezolid) most common drug combinations only had
278 and 156 samples, respectively. For other drug combina-
tions, the sample size was less than 50 cases, with some drugs
having only one case. Because of this limited sample size,
experiments to predict the treatment period were performed
only for the most common drug regimen combination. As a
result, cohorts consisting of 1296 patients with radiologi-
cal findings from chest X-rays, 480 patients with pathogen
genomic information, and 411 patients with both radiological
and genomic data were used.

Next, a Gradient Boosting regression model was trained to
predict the treatment period of the most common drug com-
bination using radiological and genomic features. Different
feature combinations were used to compare the contributions
of different features in predicting the span of the treatment
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FIGURE 1. The correlation map for radiological and genomic features and drug resistance status (N=1272). Correlation value |R| ≤ 0.25 is
considered a weak correlation, 0.25 ≤ |R| ≤ 0.50 is a mild correlation, and |R| ≥ 0.50 is a strong correlation. Note that genomic features such as
gene_snp_mutations_embB and embB are not necessarily distinct, gene_snp_mutations_embB are extracted from the internal TB Portal pipeline
and embB came from TB Profiler.

period. The mean, median, and relative percentage errors
were used to assess the model performance.

III. RESULTS
In the first study, the relationship between radiological
and genomic features and their effect on DR-TB/DS-TB
classification was investigated. The correlation was com-
puted between them, and it was observed that all the
radiological and genomic features are weekly correlated
(|R| ≤ 0.25), as shown in Figure 1. In Figure 2, all
patients with available radiological records (N=5935) were
used to compute the correlation between radiological fea-
tures and DR-TB. Here, all radiological features were
weakly correlated with DR-TB (|R| ≤ 0.25). Similarly, all
patients with available genomic records (N=2161) were
used to compute the correlation between genomic features
and DR-TB. As shown in Figure 3, eight genomic features
were mildly correlated with DR-TB (0.25 ≤ |R| ≤ 0.50), and
nine genomic features were strongly correlated with DR-TB
(|R| ≥ 0.50). In addition, some genomic features were highly
correlated with other genomic features; for example, embB

and katG, embB and rpoB, fabG1 and inhA-Pro, fabG1
and inhA, katG and rpoB, rpoB and embB. Next, Pear-
son’s chi-squared test showed that 16 out of 18 radiological
features and 29 out of 43 genomic features were statisti-
cally significant regarding DR-TB (p < 0.05). So, while
genomic features showed a strong relationship with DR-TB,
as expected, radiological features were statistically signifi-
cant but weakly correlated with DR-TB, which meant that
the association was small but did exist.

Next, a Random Forest algorithm was empirically selected
to classify DR-TB vs. DS-TB and evaluated using five-
fold cross-validation. This approach was selected because it
obtained the best performance among the six machine learn-
ing classification approaches that were evaluated. Table 1
summarizes the performances of the evaluated classifiers.
The AdaBoost algorithm was configured with a maximum
of 50 estimators and a learning rate of 1.0. The Decision
Tree classifier employed Gini impurity as the criterion; the
minimum number of samples required to split an internal
node was 2, and the minimum number of samples at a
leaf node was 1. Gaussian Naive Bayes utilized variance
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FIGURE 2. The correlation map for radiological features and drug resistance status (N=5935). Correlation value
|R| ≤ 0.25 is considered a weak correlation, 0.25 ≤ |R| ≤ 0.50 is a mild correlation, and |R| ≥ 0.50 is a strong
correlation.

TABLE 1. Comparing the performance of various classifiers in
distinguishing drug-resistant TB and drug-sensitive TB using
radiological and genomic records (N=1272).

smoothing set at 1e-9. The Multilayer Perceptron consisted
of 100 hidden layer nodes, a ReLU activation function, and
employed the Adam optimizer with a learning rate of 0.001.
Random Forest incorporated 1000 trees with a maximum
tree depth of 10, using Gini impurity as the criterion and
requiring a minimum of 2 samples for internal node splitting
and 1 sample for a leaf node. SVM employed a regularization
parameter of 1.0 and used the radial basis function as the
kernel.

As shown in Table 2, the Random Forest classification
model achieved an average accuracy of 93.9% using only
genomic features (N=2161), whereas the model’s average
accuracy using only radiological features was 66.7%

(N=5935). To compare different features, the model was
tested on the same cohort, on all patients with radio-
logical and genomic records (N=1272). The classification
model achieved an average accuracy of 92.4% when com-
bining radiological and genomic features, and also 92.4%
when using genomic features alone. The model’s aver-
age accuracy using radiological features alone was 65.0%,
as shown in Table 2. This study suggested that the radi-
ological and genomic findings could predict DR-TB, with
the genomics features alone providing the best performance,
and that adding the radiological features did not diminish
the performance of the genomic features but also did not
improve it.

In the second study, the relationship between radiological
and genomic features was investigated for this cohort, includ-
ing 2246 patients with radiological features (1130 DR-TB,
1116 DS-TB), 1040 patients with genomic features (672 DR-
TB, 368DS-TB), and only 829 patients with both radiological
and genomic features (483 DR-TB, 346 DS-TB). All the
radiological and genomic features were weekly correlated,
as shown in Figure 4. Similar to the first study, the rela-
tionship between radiological and genomic features and the
length of the first successful TP were investigated. As shown
in Figure 5, three radiological features were mildly corre-
lated with TP (0.25 ≤ |R| ≤ 0.50), including the pleural
effusion percentage of the involved hemithorax (R=-0.43),
the presence of clustered nodules (R=0.29), and the presence
of multiple nodules (R=0.32). In Figure 6, 12 genomic fea-
tures were mildly correlated with TP (0.25 ≤ |R| ≤ 0.50)
and seven genomic features were strongly correlated with
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FIGURE 3. The correlation map for genomic features and drug resistance status (N=2161). Correlation value
|R| ≤ 0.25 is considered a weak correlation, 0.25 ≤ |R| ≤ 0.50 is a mild correlation, and |R| ≥ 0.50 is a strong
correlation.

TABLE 2. Evaluating the performance of the random forest classifier in distinguishing drug-resistant TB and drug-sensitive TB with different features:
using radiological records for 5935 patients, genomic records for 2161 patients, and records with both radiological and genomic information for
1272 patients.

TP (|R| ≥ 0.50). As a result, TP correlated well with most
of the genomic features and with only three radiological
features. A Mann-Whitney U Test showed that all 18 radi-
ological features and all 42 genomic features were not inde-
pendent of TP.

Six regression approaches based on machine learning were
evaluated for predicting the first successful treatment length
(Table 3). Gradient Boosting provided the best performance.
Gradient Boosting was configured with 1000 boosting stages.
The individual regression estimators had a maximum depth
of 4, and a minimum of 5 samples was required to split
an internal node. The loss function employed mean squared
error, and the learning rate was set to 0.01. The parameters

of the other regression models used in the study remained the
same as in the first study.

The performance of Gradient Boosting regression was
then evaluated using various feature combinations (Table 4).
The Gradient Boosting regression model to predict the first
successful treatment length had an average relative error of
48.6% using radiological features alone (N=2246), and the
model’s average relative error using genomic features alone
was 25.1% (N=1040).

To compare different features, the regression model was
tested on the same cohort, including all patients with available
radiological and genomic records (N=829). The resulting
regression model had a mean absolute error of 162.9 days
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FIGURE 4. The correlation map for radiological and genomic features and treatment period (N=829). Correlation value |R| ≤ 0.25 is considered a
weak correlation, 0.25 ≤ |R| ≤ 0.50 is a mild correlation, and |R| ≥ 0.50 is a strong correlation.

using radiological features, 91.4 days using genomic features,
and 76.8 days using both feature types. The model’s rela-
tive errors were reduced to 22.0% using both radiomics and
genomics compared to 53.5% when using only radiological
features or 25.6% when using only genomic features. Note
that the treatment length could span up to 3 years. Thus,
a prediction error of less than three months was encouraging.

Table 5 shows the performance evaluation of different
training feature settings when predicting the treatment period
of the most common drug combination. In the TB Portal
dataset, this was Ethambutol, Isoniazid, Pyrazinamide, and
Rifampicin. The regression model had an average relative
error of 27.4% using only radiological features (N=1296),
and the model’s average relative error using only genomic
features was 21.2% (N=480).

To compare different features, the regression model was
tested on the same cohort, including all patients with avail-
able radiological and genomic records (N=411). The regres-
sion model achieved a mean absolute error of 34.1 days
using radiological features, 37.7 days using genomic fea-
tures, and 36.3 days using both features. The relative

TABLE 3. Comparing the performance of different regression models in
predicting the period of the first successful treatment using radiological
and genomic records for 829 patients.

error was 17.8% using the radiological features, 19.9%
using the genomic features, and 19.0% using both feature
types.
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FIGURE 5. The correlation map for radiological features and the first successful treatment period (N=2246). Correlation
value |R| ≤ 0.25 is considered a weak correlation, 0.25 ≤ |R| ≤ 0.50 is a mild correlation, and |R| ≥ 0.50 is a strong
correlation.

IV. DISCUSSION
The TB Portals program provided a heterogenous, multi-
modal dataset, with data sources from different countries,
containing cross-domain information. Prior studies utilizing
TB Portals data had examined drug-resistant molecular evo-
lution on a country-specific level [3], evaluated the genomics
of relapse and reinfection status [4], investigated polyclonal
infection among lung resection samples [5], explored the
correlation between clinical metadata and treatment out-
comes [6], and predicted drug susceptibility using machine
learning on patient imaging data [7], [8], [9], [10], [11].
Karki et al. presented a thorough study of computational
methods for detecting and predicting TB drug resistance [28].
Several of their experiments have either established or pushed
the current state-of-the-art in predicting drug resistance by
computational means. Their results suggested that detecting
DR-TB and predicting treatment outcomes in radiographs
and clinical data could be possible to some extent. How-
ever, many questions still need to be answered, and this
topic remains a subject of research. Predicting drug resis-
tance in a patient early on and administering the appropriate
patient-specific drugs would allow more efficient treatment
that could save many lives and would thus be a significant
breakthrough in the fight against drug-resistant TB [28].

This paper presented the challenges encountered and
approaches used to address them while working with
a real-world dataset. The goal was to evaluate whether

combining radiological features derived from a chest X-ray
of the host and genomic features from the pathogen can
improve several prediction tasks. To address the issue of
significantly imbalanced data, the approach involved synthe-
sizing samples of the minority class. Furthermore, the TB
Portals data contained more cases with radiological find-
ings than genomic cases, and the sparse high dimensional
nature of the genomic information was also a complica-
tion. These challenges were addressed using domain-specific
knowledge, combining related features into super-classes,
combining SNP information at the gene level, and combining
radiological findings based on their type while ignoring their
size. In the current work, coarser data classes were used than
those available as a means of addressing data sparsity due to
the high dimensional feature set. As the TB Portals program
continues to collect data, the data is expected to become
denser with the acquisition of additional cases.

The current study has some limitations: First, the predic-
tion of the first treatment length is more of a theoretical
exercise, evaluating the combination of host and pathogen
features, than a practical one. The World Health Organiza-
tion provides specific guidelines for treatment lengths based
on the resistance status of the TB case. For example, sen-
sitive TB is generally treated with a shorter timeline than
drug-resistant TB, so knowing the predicted treatment length
will not affect decisions with respect to treatment practices.
However, this study considered a scenario with unknown
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FIGURE 6. The correlation map for genomic features and the first successful treatment period (N=1040).
Correlation value |R| ≤ 0.25 is considered a weak correlation, 0.25 ≤ |R| ≤ 0.50 is a mild correlation, and |R| ≥

0.50 is a strong correlation.

TABLE 4. Evaluating the performance of the gradient boosting regressor in predicting the period of the first successful treatment with different features:
Using radiological records for 2246 patients, genomic records for 1040 patients, and records with both radiological and genomic information for
829 patients.

resistance status. One can make a point that once the genetic
features are known, there is a strong indication of the patient’s
status. Nevertheless, the experiments also included radio-
logical features, which could potentially improve prediction
accuracy.

Second, for the genomic features that were used, correla-
tions with radiological features were investigated. A limited
genomic feature set was used that correlates well with resis-
tance status. To truly evaluate pathogen genomic association

with possible radiology findings, a genome-wide association
study with the whole genome is needed.

Regarding the successful treatment length, inconsistencies
were observed in the reported treatment lengths, which were
a significant source of uncertainty. However, it is important to
acknowledge the nuances of the data source. It is real-world
data reflecting current clinical care, including the reality of
many countries with differing levels of healthcare infrastruc-
ture. According to the TB Portals definitions, even for ‘‘new’’
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TABLE 5. Gradient Boosting performance for predicting the length of the first treatment using a single drug combination (Ethambutol, Isoniazid,
Pyrazinamide, Rifampicin) with different features: Using radiological records for 1296 patients, genomic records for 480 patients, and records with both
radiological and genomic information for 411 patients.

cases, it is possible that treatment had already begun one
month before the reported dates in the database.

Additionally, the patient cases are not uniformly dis-
tributed across data providers. The unequal distribution
across providers is present in the first evaluation study as
57.6% of the cases of the selected cohort are from Geor-
gia, 11.5% are from Belarus, 8.8% are from Ukraine, 7.8%
are from Kazakhstan, 7.4% and 6.6% are from Romania
and Moldova, respectively, and 0.3% are from Azerbai-
jan. That means the machine classifier learns to discrim-
inate drug-sensitive and drug-resistant TB primarily from
these seven countries. Thus, the classification performance
is likely to decrease when the trained model is used to
identify DR-TB from other countries or when performing
classification on a country level. Similarly, when predicting
the period of the first successful treatment, the regression
model is also not trained based on a uniform distribution
across data suppliers. That is, 60% of the patient cases
of the selected cohort are from Georgia, 16% are from
Belarus, 12% are from Romania, 5% are from Ukraine,
4% are from Moldova, 2% are from Kazakhstan, and 1%
are from Azerbaijan. Finally, the machine learning model
relies on radiological findings reported by a radiologist,
which limits the full automation of the machine learning
system.

According to Table 1, the performance of the Naïve Bayes
classifier is comparable to the best result obtained by the
Random Forest. A Naïve Bayes classifier can perform well
if the dataset used for training and testing aligns well with
the assumptions of Naïve Bayes in terms of class distribu-
tions and feature relationships, in particular statistical inde-
pendence. Specifically, assuming a normal distribution of
features can prove advantageous when dealing with limited
or missing data. Therefore, it is plausible for a Naïve Bayes
classifier to achieve similar accuracy to Random Forest. Sec-
ondly, Naïve Bayes classifiers can be more effective with

smaller datasets, while the performance of random forests
tends to improve as the dataset size increases. Due to the
relatively small number of training samples, deep learning
algorithms were not used. Instead, a multilayer perceptron
was employed for the purpose of comparing its performance
with other classifiers.

The studies confirmed correlations between radiological
findings and DR-TB, between gene mutation variants and
DR-TB (Figures 2, 3), and between radiological/genomic
information and the first successful treatment length
(Figures 5, 6). On the one hand, no correlations exist between
radiological and genomic information for the cohort extracted
to classify DR-TB and DS-TB, as shown in Figure 1.
Furthermore, the combination of radiological and genomic
information did not improve the accuracy of the classifier
compared to the genomic information alone, as shown in
Table 2. On the other hand, the combination of these two
feature types improves the relative error of the regression
model by 3.6%, as shown in Table 4. For predicting the
treatment length of the most common drug combination,
the model trained on radiological features performed bet-
ter than the one trained on genomic features, as shown in
Table 5. Most of the cases of this cohort are DS-TB, which
explains why the genomic information does not contribute
to the prediction because the gene mutation variants are
more likely to indicate drug-resistant status in TB Portals
data.

Therefore, there is value in collecting data from multiple
domains to form a complete view of a TB case. Combining
data modalities may also be useful for predicting other out-
come measures. This requires further investigation.

V. CONCLUSION
TB Portals is a large, multi-source, and cross-domain dataset.
This study presented the challenges and methods used when
working with this real-world data. Initially, the cohort size

84238 VOLUME 11, 2023



V. C. B. Bui et al.: Combining Radiological and Genomic TB Portals Data for Drug Resistance Analysis

under analysis underwent a substantial reduction due to miss-
ing data and the combination of several inclusion/exclusion
criteria. Moreover, given the sparsity and high dimensional-
ity inherent in the genomic data, an aggregation technique
was employed at the gene level to facilitate the encoding of
categorical data for machine learning purposes. Lastly, the
issue of imbalanced data arose as TB Portals exhibited a skew
towards DR-TB, necessitating the utilization of oversampling
techniques to balance the minority class.

To construct the predictive models, the radiological
findings and genomic information were incorporated for
(1) differentiating between DS-TB and DR-TB, (2) predict-
ing the first successful treatment period, and (3) predicting
the treatment period of a specific drug regimen combina-
tion. The first model, incorporating solely genomic features,
achieved an average accuracy of 92.4% and retained the same
performance when radiological features were added. The
second model achieved a relative error of 25.6% using only
genomic features and reduced it to 22.0% when radiological
information was added. Finally, the third model achieved a
relative error of 17.8% using radiological features, 19.9%
using genomic features exclusively, and 19.0% using both
feature types.
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