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ABSTRACT ARTICLE HISTORY
Accurate measurement of knee alignment, quantified by the hip-knee-ankle (HKA) angle (varus-valgus), Received 22 May 2017
serves as an essential biomarker in the diagnosis of various orthopaedic conditions and selection of ~ Accepted 14 October 2018
appropriate therapies. Such angular deformities are assessed from standing X-ray panoramas. However, KEYWORDS

the limited field-of-view of traditional X-ray imaging systems necessitates the acquisition of several Long-limb X-ray; hip-knee-
sector images to capture an individual’s standing posture, and their subsequent ‘stitching’ to recon- ankle angle; axial deformity
struct a panoramic image. Such panoramas are typically constructed manually by an X-ray imaging at the knee; panorama
technician, often using various external markers attached to the individual’s clothing and visible in two reconstruction;

adjacent sector images. To eliminate human error, user-induced variability, improve consistency and segmentation; image
reproducibility, and reduce the time associated with the traditional manual ‘stitching’ protocol, here we registration

propose an automatic panorama construction method that only relies on anatomical features reliably

detected in the images, eliminating the need for any external markers or manual input from the

technician. The method first performs a rough segmentation of the femur and the tibia, then the sector

images are registered by evaluating a distance metric between the corresponding bones along their

medial edge. The identified translations are then used to generate the standing panorama image. The

method was evaluated on 95 patient image datasets from a database of X-ray images acquired across

10 clinical sites as part of the screening process for a multi-site clinical trial. The panorama reconstruc-

tion parameters yielded by the proposed method were compared to those used for the manual

panorama construction, which served as gold-standard. The horizontal translation differences were

0.43+1.95 mm 0.26 & 1.43 mm for the femur and tibia respectively, while the vertical translation

differences were 3.76 + 22.35 mm and 1.85 4+ 6.79 mm for the femur and tibia, respectively. Our results

showed no statistically significant differences between the HKA angles measured using the automated

vs. the manually generated panoramas, and also led to similar decisions with regards to the patient

inclusion/exclusion in the clinical trial. Thus, the proposed method was shown to provide comparable

performance to manual panorama construction, with increased efficiency, consistency and robustness.

1. Introduction angle ranging from 2° to 10° (Jordan et al. 2011). Significant
angular deformity will tend to overload one compartment of
the knee, either limiting the effectiveness of the therapy, or
accelerating the progression of OA regardless of the treatment
(Felson et al. 2013). As such, the HKA angle is used in most
studies as the threshold - typically between + 7° to + 10° - for
including or excluding patients in clinical trials. The knee
deformity threshold depends on the design of the trial and
the nature of the therapy being studied.

The orientation of the knee is best described by the
mechanical axes of the bones. The mechanical axis of the
femur (FM) is the line from the centre of the femoral head
running distally to the mid-condylar point between the cruci-
ate ligaments ((Yoshioka et al. 1987)). Similarly, the mechanical
axis of the tibia (TM) is the line that joins the centre of the
tibial plateau to the distal centre of the tibial plafond
(Yoshioka et al. 1989). The angle between the distal extension
of the FM and the TM is the HKA angle (Cooke et al. 1994;
Cooke and Scudamore 2003).

The presence of knee misalignment or deformity is one of the
first indicators of arthritic conditions that require further dis-
ease management or interventional treatment. Knee align-
ment depends on the geometries of the long bone and the
surfaces of the femur and tibia. The measurements of the
alignment are used for assessing the affect of the arthritic
condition on the knee joint. In addition, these measurements
are also fundamental to various aspects of musculoskeletal
research, as there is significant interest in frontal plane align-
ment measures to assess the pathogenesis of knee osteoar-
thritis (OA). However, high angular deformity limits the
effectiveness of the therapy and/or accelerates the progres-
sion of OA regardless of the treatment.

The standard of care for assessing axial deformity of the
knee and mechanical lower limb axis entails the measurement
of the hip-knee-ankle (HKA) angle, which provides a measure
of the knee varus or valgus misalignment. Moderate knee
varus or valgus misalignment is characterised by an HKA
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When the HKA angle approaches 180° the FM and TM are
collinear and coincident with the line of ground reaction force
passing from the ankle to the hip (i.e. the load-bearing axis
(LBA)), rendering a neutrally aligned limb, (Cooke et al. 2007)
(Figure 1B). In varus cases, the knee centre is lateral to the LBA
axis (Figure 1A), whereas in valgus the knee centre is medial to
the LBA axis (Figure 1C). As a convention, HKA = 0° for neutral
alignment, varus deviations are negative and valgus deviations
are positive. For a helpful schematic diagram illustrating these
various conditions of knee malalignment,we point the reader
to the work by Derek et al.(Cooke, Sled and Scudamore 2007).
Based on general observations varus leads to more severe
knee damage, hence the association of varus angles with the
negative convention (Cooke et al. 2007).

The HKA angle is traditionally measured on a full length
weight-bearing (FLWB) X-ray of an individual in standing posi-
tion. Since the measurements are based on the mechanical
axes, using only a knee view X-ray increases the risk of missed
deformity; therefore a standing X-ray panorama is required for
proper axis assessment (Cooke et al. 1991). This observation
has been recently confirmed again in (Zampogna et al. 2015),
which compared two methods for the HKA angle measure-
ment using standard X-ray images of the knee and concluded
that the correlation between the gold-standard and the best
of the two proposed methods was only moderate, further
supporting the need for a FLWB X-ray image.

The major limitation to using full standing X-ray panoramas
is that standard X-ray scanners are unable to capture images
of an individual’s standing posture in a single exposure, pri-
marily due to the limited size of the X-ray detector.
Consequentially, FLWB panorama image creation typically
entails manual stitching of three sector images (hip, knee
and ankle) by aligning each of the four image pairs (i.e. two
images per left and right limb). However, given that the
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images are acquired sequentially and the leg opening of the
standing patient may vary for each sector acquisition, the
stitching process is not only time consuming, but is also highly
subjective to reader-induced error and susceptible to user
variability. Once the FLWB panorama is available, HKA angle
measurement can be carried out in a consistent manner using
semi-automated approaches (Sled et al. 2011; Skyttd, et al.
2011). Therefore, here we focus on the development of an
automated stitching application, after which one can utilise
any semi-automated tools for HKA angle computation, redu-
cing both intra- and inter-observer measurement variability.
Existing solutions for automatically creating FLWB X-ray
images can be classified into three categories: 1) dedicated
approaches that are tied to specific X-ray acquisition devices, 2)
approaches that rely on external markers specifically introduced
for image stitching, and 3) approaches that only rely on the
image content without introducing dedicated markers.
Commercial X-ray devices that also provide a dedicated
application for FLWB panorama construction are available
from Carestream Inc. (Caresream 2012) and Shimadzu
(Toshihiro Minami and Okamoto 2014). Both of these applica-
tions are tied to the manufacturer's X-ray device and are
therefore not applicable at clinical sites that do not use the
specific equipment. Another, academic, method for panorama
construction that requires dedicated hardware is the Carm-C
system (Wang et al. 2004, 2010). This is a modified X-ray
device that incorporates a video camera for tracking the loca-
tion of the X-ray source via a dedicated pattern placed under
the patient bed. Similarly to the commercial systems, this
approach to panorama construction is not likely to see wide-
spread use due to the requirement for unique hardware.
Approaches that rely on external markers visible in all
images were proposed by several groups (Yaniv and
Joskowicz 2004; Messmer et al. 2006; Gool3en et al. 2008;

Figure 1. lllustration of the image stitching procedure: the three input images hip, knee and foot for one representative patient (a), the cropped regions from these
images needed to construct the four subsequently registered image pairs (b) and the final long limb panorama image (c).
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Apivatthakakul et al. 2013; Chen et al. 2015). These either use
radio-opaque rulers or patterns that are visible across all sector
images. This simplifies the alignment process at the cost of
requiring additional hardware. An inherent challenge asso-
ciated with marker based alignment is that when employing
a marker which is not at the same distance from the X-ray
source as the bone, a method must explicitly account for
parallax. As such, the translation estimated using the marker
needs to be scaled to correctly align the bone. In (Yaniv and
Joskowicz 2004), the estimation of the scaling factor required
that the user manually identify corresponding bone contours,
an approach which we prefer to avoid. Additionally, these
approaches assume no difference in translation between left
and right limbs. A related approach that is often used in
clinical practice is to place ad-hoc external markers for manual
alignment of the sector images. These are usually ad-hoc
markers that span the expected overlap between sector
images and are placed on the patient (e.g. paper clips).
Unfortunately, these markers often move between image
acquisitions in an independent manner with respect to the
patient anatomy, rendering them unreliable. Consequentially,
an approach that only relies on anatomical structures is pre-
ferable and will better fit within clinical practice.

Approaches that do not require dedicated markers were
described in (Wang et al. 2004) and (Lalys et al. 2018). The
former focused on aligning the visible edges of the cassettes,
a process which requires prior planning. This method can be
applied only when the sub-images are exposed simulta-
neously and all the screen edges are completely visible in
the acquired sub-images. The latter used standard image
registration with a similarity metric combining gradient inten-
sity and mutual information to obtain sufficiently robust
results (81% success rate for automatic registration). This per-
formance also required a minimal overlap between sector
images of more than 20%.

Our goal in this work was to develop a fully automated
method for panorama construction that does not require
dedicated imaging or external markers and thus more readily
adopted into clinical practice. Our approach relies on the
detection of bone edges within the sector image overlap
area, coupled with a one dimensional discrete search
approach and a training-free registration technique to reliably
align sector images to build panoramas. Moreover, the pro-
posed method is fully automatic and does not need to deal
with parallax issues as it directly aligns the anatomy of inter-
est. As an overview, our method focuses on the extraction of
continuous medial and lateral edges of the tibia and femur
from the overlapping region, followed by a distance map-
based (Maurer et al. 2003) implementation for edge alignment
instead of a traditional optimisation-based registration
approach. Moreover, while any of the traditional edge detec-
tion techniques, including Sobel, Prewitt, Roberts or Canny
edge detection (Canny 1986), or even a monogenic filter
(local-phase based boundary detection) (Rajpoot et al. 2009)
may be used, we employed a horizontal second derivative
filter to segment the bone shaft and its edges and retain
only the lateral and medial bones edges.

We next describe the proposed approach in detail and its
evaluation on a set of 95 highly variable patient X-ray image

datasets acquired at 10 different clinical sites using different
scanning protocols and energy levels. To assess the perfor-
mance of our proposed technique, we compare the automati-
cally generated panoramas to the ground truth panoramas
manually generated by an expert X-ray technician. In addition,
since these panoramas are used to measure the HKA angle and
subsequently determine whether patients should be included
or excluded in the clinical trial based on their extent of ankle
deformity, we compared the HKA angles measured from the
automated panoramas and those measured from the manual
panoramas and used the estimated angles to establish patient
eligibility for participation in the clinical trial. As such, we
evaluate both the automated X-ray panorama generation and
demonstrate its clinical utility vis-d-vis clinical standard of care.

2. Methodology
2.1 Imaging data

Our proposed technique was implemented and demonstrated
on a population of long-limb X-ray datasets provided by
Qmetrics Technologies, LLC, Pittsford, NY. The selected popu-
lation features a wide variety of image resolutions, marker
localisation, imaging artefacts, image quality and clinical con-
ditions, hence providing a heterogeneous mix of scanner
types and imaging parameters consistent with challenging
clinical cases.

2.2 Methodology overview

In order to generate a panoramic image from multiple 2D
sector images, a rigid registration is required to align the
homologous image pairs. Since image rotation is deemed to
only minimally affect the panoramas for patients in standing
position, for the purpose of our application, this rotation is
neglected. Therefore, only the horizontal (x-) and vertical (y-)
translation pairs for each stitch was needed to construct the
panoramic image.

Since the right and left limbs can also move as the patient
slightly changes his/her leg opening between successive acquisi-
tions of the image sectors, the left and right image stitches
needed to be handled separately. Nevertheless, since the patient
remains standing, then the left and right limb vertical transla-
tions (height) must be the same. Figure 2 demonstrates the
stitching process which will be discussed next.

Each data set includes three individual X-ray images - the
hip, knee and foot. The generated panoramas are constructed
from the left and right image alignments of the upper limb, in
which the lower 2/3 of the hip image is the fixed image and
the upper 2/3 of the knee image is the moving image.
Correspondingly, for the lower limb, the lower 2/3 of the
knee image is used as the fixed image and the upper 2/3 of
the foot image is the moving image, as shown in Figure 2b.

To construct the panorama image that optimally aligns the
femur and the tibia, our method consists of four stages: 1)
edge identification and extraction from all image sectors; 2)
approximate segmentation of the bone shaft, followed by the
identification and retention of the lateral and medial bones
edges only based on the rough segmentation and previous
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Figure 2. a) right moving femur image (a); b) horizontal second derivative filter; c) output of image convolution with the aforementioned filter. The resulting image
was thresholded using an intensity value selected according to the cumulative histogram, based on the mean intensity of all pixels within 65% — 95% of the
highest intensity. The obtained edges are overlaid on the moving femur image shown in red (d). Sector image showing the retained/desired lateral and medial
edges (e), obtained by partial segmentation of the bone shaft region, discussed in Stage 2.

edge extraction; 3) discrete iterative registration of bone
edges via DICE maximisation; and 4) panorama generation
and HKA angle measurement.

2.3 Stage 1: edge detection and extraction technique

2.3.1. Detection of the edges in the images

To enhance the cortical bone edges, we filtered the images with
a second derivative filter, a kernel consisting of three 20 mm H x
6 mm W intensity bands (-1, + 2, and —1) (Figure 3b).

As a result of the second derivative filtering, the intensity
differences between dark-to-bright and bright-to-dark transitions
were enhanced (Figure 3c). Based on the normalised cumulative
histogram of the convolved images, we identified the threshold
required to only maintain the bright regions of the filtered image,
which include the bone edges. The optimal threshold was empiri-
cally chosen according to the mean intensity of the pixels within
65% — 95% of the highest intensities. Note that small variations of
+ 5% around the threshold did not impact the results. An alter-
native approach to the second derivative filtering method is to use
the Canny edge detection technique. While this approach may
lead to the detection of finer, yet disconnected edges, depending
on the standard deviation of the filter, alternatively, it could also
yield continuous, but less accurate edges, attached to the sur-
rounding edges. The resulting binary image shows the edge
masks overlaid in red (Figure 3d) and the last image shows the
acquired medial and lateral femur edges (Figure 3e).

Normalized Cumulative
Histogram
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2.4 Stage 2: identification and retention of tibial and
femural medial and lateral edges

2.4.1. Bone mask initialisation

In order to enhance the cortical bone region, we filtered the
images with a step function filter, a kernel consisting of three
binary bands with values + 1, 0, + 1, each is 15 mm vertical
and 1 mm horizontal (Figure 4b). Note that since the sum of
the filter is not zero, it is not a derivative operation for edge
detection. This filter rather enhances the brightness of the
bright regions (Figure 4c). Similar to Stage 1, based on the
normalised cumulative histogram of the convolved image, we
identified the threshold required only to maintain the bright
regions of the filtered image as shown in Figure 4d. Note that
the mask might not include the bone marrow, because of its
darker appearance, and might include flesh outside the bone,
depending on the X-ray energy level and bone attenuation.

Partial Segmentation of the Bone Shaft Region: To
include the bone marrow, we filled the gap in each row -
wherever that gap exists and is larger than one cm, under the
assumption that it is bone marrow. Additionally, based on the
length of the shorter side of the cortical bone mask, we
truncated the mask as shown in Figure 4e.

The approximately linear straight shape of the shaft region,
which is the region of the mask at minimum width, assumed to
be the femur width, is used to linearly extend the mask and
remove the outside regions (Figure 4f). For the tibia, since the
minimum mask width can be either the tibia, fibula or both, and

Figure 3. lllustration of the partial segmentation of the bone shaft region: a) the region of interest (upper 2/3 of the upper-knee sector image); b) the vertical second
derivative kernel; (c) resulting image with enhanced bright regions; (d) resulting bone mask overlaid onto the original image after thresholding, based on the mean
intensity of the pixels within the 65% — 95% of the highest intensities; (e) filled-in and truncated bone mask and (f) final bone shaft region obtained by linearly

extending the minimum width mask.
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Figure 4. lllustration of the overall rough segmentation of the femur and the tibia shafts, the vertical edges and the selection of the lateral and medial edges.
Starting with the region of interest from the original right femur moving image (a); the outputs of processing steps are shown: the initial femur mask obtained by
filtering and the thresholding (b); the filled-in and truncated bone mask (c); the linearly extended mask to exclude the non-bone regions (d); the edge masks
obtained via the second derivative horizontal filter followed by thresholding (e); and the edge masks overlapping with the shaft segmentation (f). Image (g) shows
the medial (green) and the lateral (red) edge masks of the right- and left-sided, fixed and moving femurs. Note that the edges feature constant widths, enabling the
use of a single horizontal translation increment for each vertical translation increment. The selected blue marker located in the lower region of the medial edge in
the fixed image is used as an encoder for the vertical translation increments. The corresponding images (h)-(n) illustrate the same steps as shown in (a) - (g),
respectively, however applied to the tibia from the lower-knee and upper-foot sector images.
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Figure 5. lllustration of the right and left limb upper sector image registration: (a) the distance metric evaluation, the graphs show the average distance metric (y
axis in mm) of the right (blue) and left (orange) limbs for each translation pair (x axis in mm), as the moving image slides along the medial bone edge. Note that in
this example, the left and right minima (marked with a ‘X’) were very close (121 and 122 mm vertical translation from the top of the fixed image), and the chosen
translation value was 122 mm, as marked with purple *). In order to compare the differences after the chosen translation pair is applied to the moving edge images
and to the moving original intensity images, the fixed (green) and the translated (magenta) images are overlaid with 50% transparency, as shown in (b) and (c),
respectively. Finally, the distance map (green) of the fixed edges is shown in the upper and lower sections of the overlap region, together with the translated
moving edges in magenta (d).
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is therefore inconsistent, we used the largest region with con-
tinuous boundaries to linearly extend and truncate the sides.

Figure 5 illustrates the summary of the first two stages —
the overall rough segmentation of the femur and the tibia
shafts, the extraction of the vertical edges, and the selection
and retention of the lateral and medial edges - and the final
edges featuring constant width (Figure 5g,n).

In order to retain only the medial and lateral edges of the
bone, we kept only the edges that overlapped with the shaft
segmentation, then we retained only the edges that were
closest to the medial and lateral boundaries of the shaft
segmentation, as illustrated in Figure 5d-fk-m. The medial
edge was identified as the first edge detected when search-
ing the image laterally, starting form the mid-line. The sub-
sequent edges detected laterally to the medial edge were
first interrogated in terms of their length and distance from
the boundary of the segmented bone mask; as such, the
lateral bone edge was identified as the longest edge lateral
to the medial edge that was also close to the bone mask
boundary. Additionally, where the edges were disconnected,
we connected them based on the curvature direction of the
femur and tibia in the given image. Specifically, we used the
coordinates of the centre of each disconnected edge relative
to the longest edge to connect the edge regions to match
the generic curve on both sides of the bone and achieve a
long and continuous medial and lateral edge masks for each
bone in each of the fixed and moving images (Figure 5g,n).
Similarly, in the lower leg, since the fibula is always lateral to
the tibia, we only retained the medial and lateral tibia
edges, which were identified as the first two continuous
edges detected when searching the image starting from
the mid-line towards the lateral direction. Lastly, although
both the medial and lateral edges are detected, the align-
ment of the medial edges is both a necessary and sufficient
condition to ensure bone alignment, and hence the align-
ment of the lateral edge in addition to the medial edge is
implicit and neither necessary nor required to ensure overall
bone alignment.

2.5 Stage 3A: registration and corresponding edge
alignment

2.5.1. Identification of optimal left and right limb
translation parameters

After identifying the medial and lateral tibia edges from both
the fixed and moving images, we slide the moving image
along the fixed image by incrementally ‘sliding’ a landmark
on the fixed image (the blue dots in Figure 5g,n) along the
medial bone edge in the moving image.

As explained earlier, although both the medial and lateral
edges are detected, the alignment of the medial bone edge is
a sufficient condition to ensure bone alignment. In terms of
practicality, for the femur, the medial edge is also the first long
edge encountered when searching the image space laterally
starting from the mid-line; similarly, for the tibia, the medial
tibia edge is easier to identify than the lateral tibia edge, the
latter of which might also be confused with the fibula edge.
Therefore, the alignment of the medial edge for both the

femur and the tibia is a sufficient condition to ensure overall
bone alignment.

Using this method, each vertical (y) translation is accom-
panied by only one horizontal (x) translation of the fixed
landmark along the medial edge. Therefore, the registration
problem is defined as a one dimensional (1D) alignment of
masks along the medial bone edge, as opposed to a 2D image
registration, enabling us to solve a single rather than a two
degree of freedom problem. Additionally, this approach
enables us to avoid the use of standard optimisation techni-
ques which are dependent on the selection of initial para-
meter values. Instead, we use a discrete search evaluating all
possible solutions.

We evaluated an objective function for all vertical (y) trans-
lation values, along with their matching horizontal (x) transla-
tions values. When re-sampling the images at 1 mm
resolution, there are only 200-300 points along the medial
bone edge at which the similarity metric is evaluated within
the potential overlap region.

The chosen objective function is based on the Euclidean
distance between the moving and fixed edges for a given
translation pair. The employed distances were computed
using the distance map function ((Maurer et al. 2003)), defined
as follows: given a subset of metric space Q C R? with metric,
d, 8Q denotes the boundary of O and x € R? then the dis-
tance function, f(x), is defined by:

F(x) = {d(x, Q) if x € RH\aQ )

0 if x € 0Q
when d(x,0Q) := inf d(x,y),
yeon

where inf,cond(x,y) denotes the infimum of the Euclidean
distance between (x,y). Using this distance function, we
implemented an efficient computation of the distances
between the edge points in the fixed image to the closest
edge points in the moving image and vice-versa. The transla-
tion pairs along the medial right and left edges that yield the
minimum of the symmetric average distances correspond to
the correct alignment. The objective distance function com-
putes the average distance between the fixed and moving
edges per image line:

Transferred = T[0Qumoving] ()

DistfromTransferred2Fix = (Z Z f(Fix) ® Transferred) /Nr,

DistfromFixaTransferred = (Z Z f(Transferred) ® Fix) /Nr,

ED = DiStfromTransferredZFix + DisrfromFixZTransferred )

where Nr is the number of rows, T[0Quoving] is the trans-
lated moving edge image, and © denotes the Hadamard
Product (an element-wise product of matrices).

Additionally, we also tested an alternative similarity metric
that is based on the DICE coefficient between the moving and
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fixed medial edges for a given translation pair. The employed
DICE coefficient is defined by:

2(ANB)
DICE = ——+
C A+B (3)

where A and B are the areas of the edges in the fixed and the
moving images, respectively. The areas used are only within
the overlap region of the two sector images after applying the
given translation pair. Using the DICE coefficient, we calcu-
lated the similarity function, which is the sum of the DICE
coefficients calculated along the lower and upper parts of
the overlap region. Iterative alignment is achieved by sliding
the medial bone edge from the moving image along the
medial bone edge from the fixed image. The use of the DICE
coefficient is based on the overlap and non-overlap areas (i.e.,
a binary measure), whereas the distance metric provides a
distance weight. Thus, the distance metric was more robust

than the DICE coefficient, especially when a slight rotation
causes large non-overlap areas.

2.6 Stage 3B: selection of the optimal left and right
vertical translation parameter

As mentioned previously, the left and right vertical transla-
tions for the upper and lower registrations need to be the
same when reconstructing the standing panorama, as the
height of the patient estimated from the left or the right
limb must stay constant. In the event of different optimal
translation parameters resulting from the left and right limb
registration, we evaluate the distance function using the right
and left limbs together as one image (Figure 6b), while assum-
ing that the optimal overall left and right similarity (i.e., mini-
mum distance) would provide the correct alignment for both.

Nevertheless, we also tried to use the intensities around
the edges by comparing the Normalised Mutual Information

Figure 6. The calculated HKA angle based on the automated panorama (a) and the manual panorama (b).



COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING: IMAGING & VISUALIZATION 471

(NMI) ((Studholme et al. 1999)) around the bone edges.
However, since there are non-homologous markers placed
on the patient and appearing near the bone edge, the NMI
measure in some cases was low even when the bones were
aligned. Figure 6a illustrates the evaluation of the objective
function for the femur registration. Here, the left and right
minima (marked with yellow X) were very close (i.e., 121
and 122 mm from the top of the fixed image, respectively),
and the chosen one was 122 mm vertical translation marked
with purple *.

In order to compare the differences after applying the optimal
translation pair to the moving edge image and to the moving
original intensity image, we overlaid the translated images
(magenta) onto their corresponding fixed images (green) with
50% transparency Figure 6b-c, respectively. Lastly, Figure 6d
shows the upper and lower sections of the fix edges distance
map (green) together with the translated moving edges, overlaid
in magenta. Note that the distance map values at the pixels
located at the translated edges are the distances from the fixed
edges to the closest points in the translated edges.

2.7 Stage 4: automated panorama generation and HKA
angle measurement

2.7.1. Automated panorama generation

To generate the full long limb panorama, the four identified
translation pairs are applied to the right and left femur and
tibia images, as shown in Figure 2. As a result, the upper knee
sector image of the left and right limb was ‘stitched’ to the

40f
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corresponding lower hip image, and similarly the corresponding
upper foot image was ‘stitched’ to the recently generated lower
hip and upper knee partial panorama, in the end yielding a full
panorama depicting both limbs in standing position

2.7.2. HKA angle measurement

Since the main purpose of reconstructing the panoramas is to
measure the HKA angle and compare the angles estimated
using the automated vs. manually constructed panoramas, we
followed the standard procedure outlined in (Cooke et al.
2007) to select the required points for establishing the
mechanical axes of the tibia and femur and calculated the
axis angle as shown in Figure 7.

Following the development and implementation, we
evaluated the method by comparing the vertical (y-) and
horizontal (x-) translation parameters yielded by the auto-
mated panorama generation method to the translation
values chosen by the expert technician during manual
panorama construction. In addition, while this evaluation
focuses on assessing the accuracy of the image processing
technique, it does not speak to the clinical relevance or
benefit provided by the proposed method. To this extent,
we conducted an additional study in which we estimated
the hip-knee-axis angle from all automated panoramas and
compared them to the corresponding angles estimated
from the manually generated panoramas. Lastly, we used
the clinical trial patient eligibility criteria to compare the
eligibility established according to both the manual and
automated panoramas.
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Figure 7. Bland-Altman plots showing the mean + 2 standard deviation of the vertical (delta-y) and horizontal (delta-x) differences (in mm) between the automated
and the manually generated panoramas across 95 patient datasets for both right (blue diamond) and left (orange circle) limbs. The first column corresponds to the
lower-hip and upper-knee sector images stitched based on the femoral edges, while the second column corresponds to the lower-knee and upper-foot sector
images stitched based on the tibial edges. Note that patients exhibiting high translation differences, specifically differences larger than two standard deviations, are

marked in red.
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Table 1. The femoral and tibial translation differences (horizontal - delta-x and vertical - delta-y) (in mm) between the expertly stitched and automatically-
generated panoramas: range, mean + standard deviation (u & o) for right and left limbs.

Right Limb Left Limb
Range Mean + St. Dev. Range Mean + St. Dev.
Femur delta-x [—5.00,8.12] 0.434+1.94 [-6.12,11.25] 0.24 +2.31
Femur delta-y [—97.75,42.30] 3.76 £22.35 [—96.20,37.49] 4.53 £22.47
Tibia delta-x [-3.07,3.00] 0.10+1.09 [~7.52,5.75] 0.26 4 1.42
Tibia delta-y [—31.40,13.70] 2.13£7.00 [—31.40,13.17] 1.85+6.78
3. Results 3.2 Hip-knee-axis angle assessment and clinical trial

3.1 Panorama reconstruction evaluation

We first evaluated the accuracy of the image processing pipe-
line by comparing the horizontal and vertical translation para-
meters yielded by our proposed panorama generation
method to the corresponding translation parameters chosen
by the expert technician during the manual panorama crea-
tion for each of the 95 datasets.

Table 1T summarises the mean, standard deviation and
range of these horizontal (x-) and vertical (y-) translation dif-
ferences between the manual and the automated panoramas.
Note that the horizontal differences are much smaller than the
vertical differences since the horizontal translations are com-
puted in response to the unique vertical translations along the
medial femoral and tibial edges.

Figure 8 illustrates the differences between the horizontal
and vertical translation parameters corresponding to the man-
ual panoramas generated by the expert technician and the
automated panoramas across all 95 patient datasets. The
Bland-Altman plots show the mean + 2 standard deviation of
the differences between the automated and the expert man-
ual translation parameters (horizontal (x), i.e. medial/lateral,
and vertical (y), i.e. superior/inferior), for the right and left
femur and tibia. The patients with high differences, larger
than 2 standard deviations, were marked in red and two of
them are further analysed in the discussion. We choose these
two cases to show the causes responsible for the largest
differences, either due to manual error of the expert or due
to errors with our automated method associated with very low
variations of the bone width in the shaft region of the femur.

eligibility assessment

In addition, since the panoramas are used to assess the HKA
axis, we also conducted a study in which we compared the
axis angle estimated based on the automated and manual
panoramas, as well as asses patient eligibility for participation
in the clinical trial according to the inclusion/exclusion criteria
quantified based on the automated and manual panoramas.

Figure 9 illustrates the distributions, using box plots, of
the resulting vertical translations and the HKA angles esti-
mated using the automated and the manual panoramas. For
the statistical comparison between these distributions, we
inspected the histogram shapes to verify normal distribu-
tions and preformed pairwise t-tests. The two-sample t-test
with 5% significance level showed no significant difference
between the automated and the manual vertical transla-
tions (p = 0.15 for the femoral stitch, p = 0.53 for the tibial
stitch, and p = 0.38 for the overall femoral and tibial
stitches together).

A similar statistical analysis conducted for the estimated
HKA angles computed using the automated and manual
panoramas which showed no statistically significant difference
between the two datasets. Specifically, p = 0.99 for the right
limb, p = 0.65 for the left limb, and p = 0.77 for the overall
(right and left) HKA comparison.

Furthermore to assess intra-user variability, we repeatedly
selected the points defining the mechanical axes 6 times, in
random order on both the automated and manual panoramas
of five patients. The maximum variance of the 4 HKA angles
(estimated for the left and right limb using the manual and
automated panoramas) of the five patients was 0.18° In
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Figure 9. Left Panel: Bland-Altman plots showing the mean =+ 2 standard deviation of the HKA angle differences (in degrees) across 95 patient datasets between
the HKA angle calculated from automated panoramas and the expert-generated manual panoramas for the right (blue diamond) and left (orange circle) limbs. Right
Panel: Manual vs. automated HKA angle-based inclusion and exclusion criteria. As shown, the absolute value of the HKA angles of the 95 patients according to the
automated and the manual panoramas. 7° (green line) is the upper threshold for including a patient in the clinical trial and 10° (red line) is the lower threshold for

excluding the patient from the clinical trial.

addition, for a single patient dataset, the left HKA angle from
the automated panorama had a maximum variability of 1.18°.
Figure 10a shows the HKA angle differences (in degrees)
across 95 patient datasets for both right (blue diamond) and
left (orange circle) limbs and the mean + 2 standard deviation.
The differences are between the HKA angle calculated from
the selected points on the automated panorama and the HKA
angle calculated from the selected points on the manual
panorama generated by the expert. As mentioned previously,
studies use varus/valgus malalignment as the threshold for
excluding patients from the clinical trial. We divided the
patients according to the absolute value of the HKA angle -
less than 7° (included), greater than 10° (excluded) and in
between 7°-10° (possibly included). Figure 10b shows the
resulting absolute HKA angle and the common thresholds
for excluding patients from clinical trial. Moreover, it also
shows two cases with different clinical decisions, depending
on which HKA angle is used - the angle computed from the
automated panorama image or the manual panorama image
stitched by the expert. Note that the clinical decisions for
cases 25, 52 and 56, according to the automated or manual
HKA angles are the same, although according to the vertical
translation differences, they are considered as outliers.
Similarly, Table 2 reports the number of included/possible/
excluded patients based on the automated vs. the manual
HKA angles. The two cases that would result in different
clinical decisions, Case 66 and Case 71, being both excluded
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Figure 10. Left Panel: HKA Angle vs. vertical translation differences between

based on the manually calculated angle, are analysed in the
discussion. Note that a patient with an incorrect eligibility
decision might interrupt the results of the clinical trial or
cause additional expenses to the clinical trial, as additional
patients would need to be enrolled.

Figure 11a shows for each patient the HKA angle difference
(blue left y axis and blue diamond) and the total (femoral plus
tibial) vertical translation difference (orange right y axis and
orange circle), while Figure 11b shows the HKA angle differ-
ence (y axis) as a function of the total vertical translation
difference (x axis). These figures show that even for a large
translation difference of 90 mm, the HKA angle difference was
only 1°. Case 66 exhibited the maximum vertical translation
difference between the automated and the manual panora-
mas of 98 mm, which, in turn, resulted in a HKA angle differ-
ence of 2.35° This particular case featured the large difference
between the manual and automated panorama translation
parameters due to an error associated with the femural stitch

Table 2. The number of patients eligible for inclusion (HKA angle < 7°) in the
clinical trial, exclusion, (HKA angle > 10°) and tentative inclusion assessed
across all 95 patients based on the automated and the manual panoramas.

Include Tentative Exclude
HKA <7° < 7°HKA <10° HKA >10° Total
Automated Panorama 79 12 4 95
Manual Panorama 77 13 5 95

HKA Angle vs. Vertical Translations
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30

the automated and manual panoramas: left y axis (blue) shows the HKA angle

difference (blue diamond), while the right y axis (orange) shows the total (femoral plus the tibial) vertical translation difference (orange circle) between the
automated and the manual panoramas. Right Panel: Each patient is marked by a data point, where the x coordinate corresponds to the total vertical translation
difference and the y coordinate corresponds to the HKA angle difference, both computed between the automated and manual panoramas.
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Figure 11. Visualisation of patient No. 66 — automated and manual panoramas. From left to right: the automated long limb panorama (a); the expert manually-
generated long limb panorama (b); the differences between the edges and the original X-ray images in the upper stitch after applying the automated translations,
with 50% transparency showing the fixed (green), moving (magenta) and overlap (white) regions (c) and (d), respectively. Similarly, the differences after applying
the expert manual translations are also shown in panels (e) and (f). The manually constructed panorama is clearly erroneous given that in this image the femur is

shorter than the tibia.

of the manually reconstructed panorama, as shown in
Figure 12. All other cases featured HKA angle differences of
less than 1.25° for vertical translation parameter differences of
up to 88 mm.

The performance evaluation was conducted using non-
optimised MATLAB code running on Windows 7 on a 64 bit
PC, 3.6 GHz Intel CPU with 32 GB RAM. When the images were
re-sampled into 1 mm isotropic spacing, the average proces-
sing time for the edge extraction was 6 s and for the optimal
translation identification was another 6 s. Lastly, the panorama
generation required 1 s, leading to an overall automated
panorama reconstruction panorama in less than 15 s from
start to finish. Because of our reduction of the ‘stitching pro-
blem’ into a single degree of freedom alignment along the
medial edge, we avoided the use of an optimisation solver and
consistently reached a global minimum convergence.

4. Discussion

The task of creating an FLWB panoramic image is at its core a
registration task. Our initial attempts at addressing this task
explored the use of standard intensity based registration algo-
rithms. Our first approach was described in (Miller et al. 2016).
In that approach, we started by performing image de-noising
using a Wiener filter followed by image enhancement with the
Sobel filter. The resulting gradient magnitude images were
used as input for rigid intensity based registration with the
sum-of-squared differences as the similarity metric. This

method performed reliably on less than 50% of the data. We
then evaluated another intensity-based registration approach
implemented via two registration steps, without image pre-
processing, using the SimplelTK registration framework (Yaniv
et al. 2017). The first step consisted of an initial registration by
an exhaustive search of the maximum normalised cross corre-
lation (NCC) on a coarse grid within the potential overlap
region. The second step entailed the final registration using
a multi-resolution pyramid, NCC with 20% sampling rate, and
gradient descent optimizer. For both steps, we enforced the
constraint that both the left and right limb vertical translations
be equal. While this approach yielded acceptable results in
terms of bone alignment, it performed reliably only 30% of the
time (30/95 datasets). Based on these results, we did not
pursue intensity based registration any further.

In this work, we presented a pipeline that enables us to
detect sufficiently reliable bone edges that are subsequently
used as features for sector image alignment. We first detect
and enhance all intensity transitions in the images by using a
vertical second derivative filter. We then identify the bone
edges according to the partial segmentation of the shaft
region. We identify the optimal sector image alignment by
minimising the distance between the bone edges. This metric
was evaluated for all iterative vertical translations along the
medial edge of the bone. This approach allowed us to avoid
the use of standard optimisation techniques that may con-
verge to a local minimum when minimising the similarity
metric. Lastly, we assessed the HKA angle for both the right
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Figure 12. Visualisation of Patient No. 71 — automated and manual panoramas. From left to right: the automated long limb panorama (a); the expert manual long
limb panorama (b); the differences between the edges and the original X-rays in the upper stitch after applying the automated translations, showing the fixed
(green), moving (magenta) and overlap (white) (c) and (d), respectively; similarly, the differences after applying the expert translations (e) and (f).

and left limbs using both the automated and manually con-
structed panoramas.

In our prior work ((Ben-Zikri et al. 2017)) to keep only the
cortical bone edges in the fixed and moving images, we mea-
sured the maximum intensity (/) and the difference between
the maximum and minimum (/,,,;,) intensities within a window of
each edge. The chosen window has the same width as the edge
mask and a height of 5-10 mm and consists of the edges in the
lower half of the fixed image and the edges in the upper half of
the moving image. We normalised the image intensities to a 0-1
range and only retained the edges that satisfied the relationship
2lmax — Imin>1.2. This selection method aimed to ensure that
only the high intensities features corresponding to the cortical
edges were featured in the window. The edges that satisfied this
condition were overlaid on the fixed and moving images.
However, this approach proved to not be as reliable as the
shaft segmentation, since it depends highly on the chosen win-
dow, and hence yielded a high rate of false positives.

We summarise the results by first evaluating the accuracy of
the automated panorama reconstruction method by comparing
the yielded translation values to those selected by the expert
technician during manual stitching. In addition, we also assessed
and compared the HKA angle computed from both the auto-
mated and manual panoramas. Figure 9-10 show the distribu-
tion and the differences of the resulting translations and HKA
angles between the manual stitching of the expert and the
automated stitching.

For the femoral stitch, where the shape of the femur body
is not changing width, the maximum vertical translation dif-
ferences are higher (Table 1). Specifically, patient 66 show-
cased the largest vertical translation difference of —97.75 mm.
Figure 12a,b shows the two panorama images — automated
and expert manual — side by side and illustrates an example
where the manually constructed panorama is wrong, as the
femur is shorter than the tibia.

We also discuss an additional case in detail - patient 71
featuring a femoral vertical translation difference of
—61.62 mm. As illustrated in Figure 13a,b, we can see that
the femur length is too long in the automated panorama.
Figure 13¢,d show good alignment for the automated transla-
tions and Figure 13e,f show good alignment for the expert
translations. Since the femur width is not changing much in
this region, the average distance metric for both the auto-
mated method and expert are very close (Figure 13).

Unlike Patient 71, for Patient 66 the distance metric values
for the expert translations were very high and therefore dif-
ferent from the values from the automated translations, which
suggested an error associated with the manual panorama
generation, while for Patient 71, it suggests an error in the
automated panorama reconstruction.

4.1 Study limitations

The panorama reconstruction method relies on the identification
of the optimal translation between the hip, knee and ankle
image sectors based on the anatomical features associated
with the bone in the overlap regions. Although the leg opening
(i.e., distance between the patient’s feet) may not be similar
during the acquisition of all three image sectors, our method
does not take into account any rotations for image sector align-
ment. Although perceived that leg opening may be better cap-
tured via rotation, the currently employed clinical approach for
panorama reconstruction relies solely on manual translation of
the image sectors. Since our method performed as well as the
current clinical method, we don’t believe the panorama recon-
struction algorithm needs to incorporate rotation effects.

Also to account for potential changes in the leg opening in
the acquisition of the subsequent image sectors, rather than
handling the sector images simultaneously for the left and right
limb, we split each sector in the left and right limb and
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essentially identified the optimal translational parameters for
each leg independently, hence providing two ‘recipes’ for
panorama reconstruction — one based on the left and one
based on the right leg. Nevertheless, the overall height of the
patient and hence the height of the standing panorama should
be the same regardless of which side it is estimated. In the
event of different optimal translation parameters resulting from
the left and right limb registration, we evaluate the distance
function using the right and left limbs together as one image,
while assuming that the optimal overall left and right similarity
(i.e., minimum distance) would provide the correct alignment
for both.

We conducted this study and demonstrated and evaluated
our method using a database of 95 patient image datasets, each
consisting of three sector images and acquired across more than
20 clinical sites using different imaging protocols and scanners.
Successful panorama generation typically requires a certain
amount of overlap between the sector images. For example,
the recent work cited earlier (Lalys et al. 2018) required a mini-
mum of 20% overlap between the image sectors, as validated on
30 patient datasets. Similarly, most intensity-based registration
techniques perform optimally given 40% or greater overlap.
Nevertheless, our method does not require any specific overlap
between the image sectors, as confirmed by the wide range of
overlap features in the 95 patient datasets used for validation.
The overlap range for the femur ranged from 3 to 43%, with a
mean overlap of 21%, and for the tibia the overlap ranged from
10 to 58% with a mean overlap of 34%. Moreover, more than
35% of the datasets featured less than 20% overlap between the
image sectors, and our proposed method still performed
robustly despite the very limited overlap.

Lastly, in this study, we used the manually reconstructed
panoramas as ground-truth against which we assessed the
panoramas reconstructed automatically using our method.
However, not all manual panoramas were correctly recon-
structed due to the user’s inability to determine the optimal
overlap. As a result, for a select few of the datasets, the difference
between the parameters associated with the automated vs.
manual translation were slightly large, rendering our method
as sub-optimal, when in fact a large error contribution is caused
by the error in the ground truth. Furthermore, the manual panor-
amas used as ground truth in this study were not all recon-
structed by a single technician, but rather by a single

technician at each site. The inter-observer variability for different
technicians is not known. An improved ground truth can poten-
tially be obtained by having multiple technicians manually align
the images. This would provide some knowledge with respect to
the reproducibility of the manual panorama reconstruction tech-
nigues as it pertains to different technicians. Unfortunately, the
manual alignment of the image sectors and panorama recon-
struction by multiple technicians is currently not part of the
clinical protocol at any of the sites — each manual panorama
was reconstructed manually by only one technician. Thus, we
can only say that the algorithm proposed in this work performs
at a level that is close to that of a typical technician, but not a
specific technician or the same technician, ether at one site or
across all sites. To mitigate this limitation, a potential avenue for
future work could consist of having multiple technicians recon-
struct all manual panoramas. This approach will help provide a
measure of the variability associated with the manual panoramas
that serve as gold standard to assess the automated panorama
reconstruction method described and validated here.

5. Summary and conclusion

In this paper, we developed and evaluated a fully automated long-
limb X-ray image stitching procedure for generating panoramas
utilised to quantify the HKA axis deformity. This method is unique
as it is based only on anatomical features and bone shape and the
sector image registration does not require optimisation. The pro-
posed method employs the medial and the lateral edges of the
femur and the tibia captured in both the fixed and moving images
and aligns the right and left sectors by minimising the Euclidean
distance between the homologous bone edges. Moreover, by
focusing on the registration of the bone edges, the achieved
alignment is independent of the position of any markers, which
may aid in the process, or mislead the process due to changes in
their position during subsequent sector image acquisition.

We have implemented and evaluated our method using 95
patient datasets acquired as part of a multi-site clinical trial for
patient screening. The images posed many of the traditional
clinical challenges as a result of different acquisition protocols
and imaging scanners. According to our results, the horizontal
and vertical translation parameters recorded from the manually
assembled panoramas were not significantly different from the
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automated registration parameters. There were also no significant
visual differences between the manually and automatically gen-
erated panoramas images, except for five cases where the femoral
vertical differences between the manual and the automated were
greater than 40 mm. These cases featuring large differences are
similar to the two cases in the discussion, with the large differ-
ences being primarily caused by the femur region featuring very
small shaft width variations, human error, and possibly incomplete
edges. Additionally, there were no significant differences between
the HKA angles estimated from the manually and automatically
generated panorama images or between patient eligibility for
participation in the clinical established based on the measured
HKA angles.

Lastly, in terms of performance, the average processing
time for the edge extraction was 6 s and for the optimal
translation identification was another 6 s. Panorama genera-
tion required 1 s, leading to an overall automated panorama
reconstruction panorama in less than 15 s from start to finish,
which is faster than the manual alignment workflow. In light of
this study, as well as the simplicity of the method and its
robustness across the highly variable testing dataset, our
results are encouraging, rendering this method as suitable
for the intended application.
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